Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URL's added here will be added as <link>s in order, and before the CSS in the editor. If you link to another Pen, it will include the CSS from that Pen. If the preprocessor matches, it will attempt to combine them before processing.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Save Automatically?

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                
              
            
!

CSS

              
                * { margin: 0; padding: 0; }

              
            
!

JS

              
                console.clear()

const LABEL_TEXT = 'ABC'

const clock = new THREE.Clock()
const scene = new THREE.Scene()

// Create a new framebuffer we will use to render to
// the video card memory
let renderBufferA = new THREE.WebGLRenderTarget(
  innerWidth * devicePixelRatio,
  innerHeight * devicePixelRatio
)
// Create a second framebuffer
let renderBufferB = new THREE.WebGLRenderTarget(
  innerWidth * devicePixelRatio,
  innerHeight * devicePixelRatio
)

// Create a threejs renderer:
// 1. Size it correctly
// 2. Set default background color
// 3. Append it to the page
const renderer = new THREE.WebGLRenderer()
renderer.setClearColor(0x222222)
renderer.setClearAlpha(0)
renderer.setSize(innerWidth, innerHeight)
renderer.setPixelRatio(devicePixelRatio || 1)
document.body.appendChild(renderer.domElement)

// Create an orthographic camera that covers the entire screen
// 1. Position it correctly in the positive Z dimension
// 2. Orient it towards the scene center
const orthoCamera = new THREE.OrthographicCamera(
  -innerWidth / 2,
  innerWidth / 2,
  innerHeight / 2,
  -innerHeight / 2,
  0.1,
  10,
)
orthoCamera.position.set(0, 0, 1)
orthoCamera.lookAt(new THREE.Vector3(0, 0, 0))

// Create a plane geometry that spawns either the entire
// viewport height or width depending on which one is bigger
const labelMeshSize = innerWidth > innerHeight ? innerHeight : innerWidth
const labelGeometry = new THREE.PlaneBufferGeometry(labelMeshSize, labelMeshSize)

// Programmaticaly create a texture that will hold the text
let labelTextureCanvas
{
  // Canvas and corresponding context2d to be used for drawing the text
  labelTextureCanvas = document.createElement('canvas')
  const labelTextureCtx = labelTextureCanvas.getContext('2d')
  // Dynamic texture size based on the device capabilities
  const textureSize = Math.min(renderer.capabilities.maxTextureSize, 2048)
  const relativeFontSize = 20
  // Size our text canvas
  labelTextureCanvas.width = textureSize
  labelTextureCanvas.height = textureSize
  labelTextureCtx.textAlign = 'center'
  labelTextureCtx.textBaseline = 'middle'
  // Dynamic font size based on the texture size (based on the device capabilities)
  labelTextureCtx.font = `${relativeFontSize}px Helvetica`
  const textWidth = labelTextureCtx.measureText(LABEL_TEXT).width
  const widthDelta = labelTextureCanvas.width / textWidth
  const fontSize = relativeFontSize * widthDelta
  labelTextureCtx.font = `${fontSize}px Helvetica`
  labelTextureCtx.fillStyle = 'white'
  labelTextureCtx.fillText(LABEL_TEXT, labelTextureCanvas.width / 2, labelTextureCanvas.height / 2)
}
// Create a material with our programmaticaly created text texture as input
const labelMaterial = new THREE.MeshBasicMaterial({
  map: new THREE.CanvasTexture(labelTextureCanvas),
  transparent: true
})
// Create a plane mesh, add it to the scene
const labelMesh = new THREE.Mesh(labelGeometry, labelMaterial)
scene.add(labelMesh)

// Create a second scene that will hold our fullscreen plane
const postFXScene = new THREE.Scene()
// Create a plane geometry that covers the entire screen
const postFXGeometry = new THREE.PlaneBufferGeometry(innerWidth, innerHeight)
// Create a plane material that expects a sampler texture input
// We will pass our generated framebuffer texture to it
const postFXMaterial = new THREE.ShaderMaterial({
  uniforms: {
    sampler: { value: null },
    time: { value: 0 },
    mousePos: { value: new THREE.Vector2(0, 0) }
  },
  // vertex shader will be in charge of positioning our plane correctly
  vertexShader: `
      varying vec2 v_uv;

      void main () {
        // Set the correct position of each plane vertex
        gl_Position = projectionMatrix * modelViewMatrix * vec4(position, 1.0);

        // Pass in the correct UVs to the fragment shader
        v_uv = uv;
      }
    `,
  fragmentShader: `
      // Pass in time
      uniform float time;
      
      // Pass in normalised mouse coordinates
      uniform vec2 mousePos;
  
      // Declare our texture input as a "sampler" variable
      uniform sampler2D sampler;

      // Consume the correct UVs from the vertex shader to use
      // when displaying the generated texture
      varying vec2 v_uv;
      
      //	Simplex 3D Noise 
      //	by Ian McEwan, Ashima Arts
      //
      vec4 permute(vec4 x){return mod(((x*34.0)+1.0)*x, 289.0);}
      vec4 taylorInvSqrt(vec4 r){return 1.79284291400159 - 0.85373472095314 * r;}

      float snoise(vec3 v){ 
        const vec2  C = vec2(1.0/6.0, 1.0/3.0) ;
        const vec4  D = vec4(0.0, 0.5, 1.0, 2.0);

      // First corner
        vec3 i  = floor(v + dot(v, C.yyy) );
        vec3 x0 =   v - i + dot(i, C.xxx) ;

      // Other corners
        vec3 g = step(x0.yzx, x0.xyz);
        vec3 l = 1.0 - g;
        vec3 i1 = min( g.xyz, l.zxy );
        vec3 i2 = max( g.xyz, l.zxy );

        //  x0 = x0 - 0. + 0.0 * C 
        vec3 x1 = x0 - i1 + 1.0 * C.xxx;
        vec3 x2 = x0 - i2 + 2.0 * C.xxx;
        vec3 x3 = x0 - 1. + 3.0 * C.xxx;

      // Permutations
        i = mod(i, 289.0 ); 
        vec4 p = permute( permute( permute( 
                   i.z + vec4(0.0, i1.z, i2.z, 1.0 ))
                 + i.y + vec4(0.0, i1.y, i2.y, 1.0 )) 
                 + i.x + vec4(0.0, i1.x, i2.x, 1.0 ));

      // Gradients
      // ( N*N points uniformly over a square, mapped onto an octahedron.)
        float n_ = 1.0/7.0; // N=7
        vec3  ns = n_ * D.wyz - D.xzx;

        vec4 j = p - 49.0 * floor(p * ns.z *ns.z);  //  mod(p,N*N)

        vec4 x_ = floor(j * ns.z);
        vec4 y_ = floor(j - 7.0 * x_ );    // mod(j,N)

        vec4 x = x_ *ns.x + ns.yyyy;
        vec4 y = y_ *ns.x + ns.yyyy;
        vec4 h = 1.0 - abs(x) - abs(y);

        vec4 b0 = vec4( x.xy, y.xy );
        vec4 b1 = vec4( x.zw, y.zw );

        vec4 s0 = floor(b0)*2.0 + 1.0;
        vec4 s1 = floor(b1)*2.0 + 1.0;
        vec4 sh = -step(h, vec4(0.0));

        vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ;
        vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ;

        vec3 p0 = vec3(a0.xy,h.x);
        vec3 p1 = vec3(a0.zw,h.y);
        vec3 p2 = vec3(a1.xy,h.z);
        vec3 p3 = vec3(a1.zw,h.w);

      //Normalise gradients
        vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
        p0 *= norm.x;
        p1 *= norm.y;
        p2 *= norm.z;
        p3 *= norm.w;

      // Mix final noise value
        vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0);
        m = m * m;
        return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1), 
                                      dot(p2,x2), dot(p3,x3) ) );
      }

      void main () {
        float a = snoise(vec3(v_uv * 1.0, time * 0.1)) * 0.0032;
        float b = snoise(vec3(v_uv * 1.0, time * 0.1 + 100.0)) * 0.0032;
        
        // Sample the correct color from the generated texture
        vec4 inputColor = texture2D(sampler, v_uv + vec2(a, b) + mousePos * 0.005);
        // Set the correct color of each pixel that makes up the plane
        gl_FragColor = vec4(inputColor * 0.975);
      }
    `,
    transparent: true
})
const postFXMesh = new THREE.Mesh(postFXGeometry, postFXMaterial)
postFXScene.add(postFXMesh)

// Start out animation render loop
renderer.setAnimationLoop(onAnimLoop)
// Attach mousemove event listener
document.addEventListener('mousemove', onMouseMove)

function onMouseMove (e) {
  const x = (e.pageX / innerWidth) * 2 - 1
  const y = (1 - e.pageY / innerHeight) * 2 - 1
  postFXMesh.material.uniforms.mousePos.value.set(x, y)
}

function onAnimLoop() {
  // Do not clear the contents of the canvas on each render
  // In order to achieve our effect, we must draw the new frame
  // on top of the previous one!
  renderer.autoClearColor = false
  
  // Explicitly set renderBufferA as the framebuffer to render to
  renderer.setRenderTarget(renderBufferA)
  
  // On each new frame, render the scene to renderBufferA
  renderer.render(postFXScene, orthoCamera)
  renderer.render(scene, orthoCamera)
  
  // Set the device screen as the framebuffer to render to
  // In WebGL, framebuffer "null" corresponds to the default framebuffer!
  renderer.setRenderTarget(null)
  
  // Assign the generated texture to the sampler variable used
  // in the postFXMesh that covers the device screen
  postFXMesh.material.uniforms.sampler.value = renderBufferA.texture
    
  // Render the postFX mesh to the default framebuffer
  renderer.render(postFXScene, orthoCamera)
  
  // Ping-pong our framebuffers by swapping them
  // at the end of each frame render
  const temp = renderBufferA
  renderBufferA = renderBufferB
  renderBufferB = temp
}

              
            
!
999px

Console