Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URLs added here will be added as <link>s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Auto Save

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                
              
            
!

CSS

              
                *
  box-sizing: border-box


body
  padding: 0
  margin: 0
  background-color: #333
  color: #fff
  font-family: 'Roboto', arial

canvas
  border: 2px solid white
  margin: 20px auto
  display: block
p
  margin: 10px auto
  width: 640px // same as the canvas just to align it

              
            
!

JS

              
                class DNA {
    constructor(lifeSpan) {
        this.genes = [];
        this.lifeSpan = lifeSpan;

        // Populate the new DNA object with some fresh new genes
        for (let i = 0; i < lifeSpan; i++) {
            this.genes[i] = p5.Vector.random2D();
            this.genes[i].setMag(0.3);
        }
    }

    // The crossover() will take care of merging the parents's DNA
    crossover(partner) {
        let newDNA = new DNA(this.lifeSpan);
        let midPoint = floor(random(this.genes.length));
        // We pick a point in the genes
        // We will create the first half of the child DNA from the genes BEFORE the midpoint
        // And the second half from the rest of parentB DNA
        for (let i = 0; i < this.genes.length; i++) {
            if (i > midPoint) {
                newDNA.genes[i] = this.genes[i];
            } else {
                newDNA.genes[i] = partner.genes[i];
            }
        }
        return newDNA;
    }

    // The mutation() will take care of causing minor and random changes on the genes
    mutation() {
        for (let i = 0; i < this.genes.length; i++) {
            if (random(1) < 0.01) {
                this.genes[i] = p5.Vector.random2D();
                this.genes[i].setMag(0.3);
            }
        }
    }
}



class Rocket {
    constructor(lifeSpan, target, obstacle, childDNA) {
        this.pos = createVector(width / 2, height - 50);
        this.w = 5;
        this.h = 10;
        this.color = [255, 255, 255];
        this.vel = createVector();
        this.acc = createVector();
        if (childDNA) {
            this.dna = childDNA;
        } else {
            this.dna = new DNA(lifeSpan);
        }
        this.count = 0;
        this.target = target;
        this.obstacle = obstacle;
        this.fitness = 0;
        this.completed = false;
        this.crashed = false;
    }

    applyForce(f) {
        this.acc.add(f);
    }

    update() {
        let d = dist(this.pos.x, this.pos.y, this.target.x, this.target.y);
        // If the rocket the close enough then its reached its goal
        if (d < 10) {
            this.completed = true;
            this.pos = this.target.copy();
            this.color = [46, 204, 113];
        }

        // Check if the rocket hit the obstacle
        if (
            this.pos.x > this.obstacle.pos.x &&
            this.pos.x < this.obstacle.pos.x + this.obstacle.w &&
            this.pos.y > this.obstacle.pos.y &&
            this.pos.y < this.obstacle.pos.y + this.obstacle.h
        ) {
            this.crashed = true;
            this.color = [231, 76, 60];
        }

        // Check if the rocket hit the world edges
        if (this.pos.x > width || this.pos.x < 0) {
            this.crashed = true;
            this.color = [231, 76, 60];
        }
        if (this.pos.y > height || this.pos.y < 0) {
            this.crashed = true;
            this.color = [231, 76, 60];
        }

        // Apply the moving forces of the rocket "thrusters"
        this.applyForce(this.dna.genes[this.count]);
        this.count++;

        // Only move if the rocket didn't reach it goal
        if (!this.completed && !this.crashed) {
            this.vel.add(this.acc);
            this.pos.add(this.vel);
            this.acc.mult(0);
            this.vel.limit(4);
        }
    }

    show() {
        push();
        noStroke();
        fill(...this.color, 150);
        translate(this.pos.x, this.pos.y);
        rotate(this.vel.heading());
        rectMode(CENTER);
        // the rocket body
        rect(0, 0, 10, 5);
        // this tip
        triangle(
            this.h / 2,
            -this.w / 2,

            this.h / 2,
            this.w / 2,

            this.h,
            0
        );
        pop();
    }

    calcFitness() {
        // Calculating the based on how much the rocket got close to the target
        let d = dist(this.pos.x, this.pos.y, this.target.x, this.target.y);
        this.fitness = map(d, 0, width, width, 0);
        if (this.completed) {
            this.fitness *= 10;
        }
        if (this.crashed) {
            this.fitness /= 10;
        }
    }
}


class Population {
    constructor(populationSize, lifeSpan, target, obstacle) {
        this.rockets = [];
        this.populationSize = populationSize;
        this.matingPool = [];

        // Populate the new population with some fresh new Rockets
        for (let i = 0; i < this.populationSize; i++) {
            this.rockets[i] = new Rocket(lifeSpan, target, obstacle);
        }
    }

    evaluate() {
        // Get the best rocket based on its fitness
        let maxFit = 0;
        for (let i = 0; i < this.populationSize; i++) {
            this.rockets[i].calcFitness();
            if (this.rockets[i].fitness > maxFit) {
                maxFit = this.rockets[i].fitness;
            }
        }
        console.clear();
        console.log(`Best fitness reached is: ${maxFit}`);

        for (let i = 0; i < this.populationSize; i++) {
            // Normalizing the fitness value to be in the range between 0 and 1
            this.rockets[i].fitness /= maxFit;
        }

        // Resting the mating pool
        this.matingPool = [];

        // We want to increase the possibility of picking a rocket as parent to be related with how good its fitness
        // So if it has a fitness of 1 it will be in the mating pool 100 times
        // And if it has a fitness of 0.1 it will be in the mating pool only 10 times which will decrease its chances of being picked
        for (let i = 0; i < this.populationSize; i++) {
            let n = this.rockets[i].fitness * 100;

            for (let j = 0; j < n; j++) {
                this.matingPool.push(this.rockets[i]);
            }
        }
    }

    selection() {
        let newRockets = [];
        for (let i = 0; i < this.rockets.length; i++) {
            // Get two random parents from the mating pool and make a crossover
            let parentA = random(this.matingPool).dna;
            let parentB = random(this.matingPool).dna;
            let childDNA = parentA.crossover(parentB);
            // Apply some mutations to the child
            childDNA.mutation();
            // Replacing each rocket from the old generation with a new rocket
            newRockets[i] = new Rocket(
                this.rockets[i].lifeSpan,
                this.rockets[i].target,
                obstacle,
                childDNA
            );
        }
        // Replace old rockets array with the new one
        this.rockets = newRockets;
    }

    run() {
        for (let i = 0; i < this.populationSize; i++) {
            this.rockets[i].update();
            this.rockets[i].show();
        }
    }
}



class Block {
    constructor(x, y, w, h) {
        this.pos = createVector(x, y);
        this.w = w;
        this.h = h;
    }

    show() {
        noStroke();
        rect(this.pos.x, this.pos.y, this.w, this.h);
    }
}



// Init app
let population;
let lifeSpan = 450;
let lifeP;
let currentGenerationNumber = 0;
let pastGnerationsCounter = 1;
let target;
let obstacle;
let x = 20;
let y = 20;

function setup() {
    createCanvas(640, 480);
    // Init target and the obstacle
    target = createVector(width / 2, 50);
    obstacle = new Block(width / 2 - 75, height / 2, 150, 10);

    population = new Population(25, lifeSpan, target, obstacle);
    lifeP = createP();
}

function draw() {
    background(55);
    lifeP.html(`Generation #${pastGnerationsCounter}`);
    currentGenerationNumber++;

    // Obstacle
    obstacle.show();

    // Show the target
    ellipse(target.x, target.y, 16);

    // Kickstart the population
    population.run();

    // If we reached the end of a generation life span
    if (currentGenerationNumber === lifeSpan) {
        // Evaluate stuff and generate new generation
        population.evaluate();
        population.selection();
        currentGenerationNumber = 0;
        pastGnerationsCounter++;
    }
}

              
            
!
999px

Console