HTML preprocessors can make writing HTML more powerful or convenient. For instance, Markdown is designed to be easier to write and read for text documents and you could write a loop in Pug.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. So you don't have access to higher-up elements like the <html>
tag. If you want to add classes there that can affect the whole document, this is the place to do it.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. If you need things in the <head>
of the document, put that code here.
The resource you are linking to is using the 'http' protocol, which may not work when the browser is using https.
CSS preprocessors help make authoring CSS easier. All of them offer things like variables and mixins to provide convenient abstractions.
It's a common practice to apply CSS to a page that styles elements such that they are consistent across all browsers. We offer two of the most popular choices: normalize.css and a reset. Or, choose Neither and nothing will be applied.
To get the best cross-browser support, it is a common practice to apply vendor prefixes to CSS properties and values that require them to work. For instance -webkit-
or -moz-
.
We offer two popular choices: Autoprefixer (which processes your CSS server-side) and -prefix-free (which applies prefixes via a script, client-side).
Any URLs added here will be added as <link>
s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.
You can apply CSS to your Pen from any stylesheet on the web. Just put a URL to it here and we'll apply it, in the order you have them, before the CSS in the Pen itself.
You can also link to another Pen here (use the .css
URL Extension) and we'll pull the CSS from that Pen and include it. If it's using a matching preprocessor, use the appropriate URL Extension and we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
JavaScript preprocessors can help make authoring JavaScript easier and more convenient.
Babel includes JSX processing.
Any URL's added here will be added as <script>
s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.
You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.
If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
Search for and use JavaScript packages from npm here. By selecting a package, an import
statement will be added to the top of the JavaScript editor for this package.
Using packages here is powered by esm.sh, which makes packages from npm not only available on a CDN, but prepares them for native JavaScript ESM usage.
All packages are different, so refer to their docs for how they work.
If you're using React / ReactDOM, make sure to turn on Babel for the JSX processing.
If active, Pens will autosave every 30 seconds after being saved once.
If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.
If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.
Visit your global Editor Settings.
<div id="controls">
<div>
<input type="range" id="rays" min="2" max="50" step="1">
<label for="rays">Num rays</label>
<input type="checkbox" id="en1" checked="true">
<label for="en1">Lens 1</label>
<input type="checkbox" id="en2" checked="true">
<label for="en2">Lens 2</label>
<input type="checkbox" id="en3" checked="true">
<label for="en3">Lens 3</label>
</div>
<div>
<input type="range" id="bnd1" min="100" max="2000" step="10">
<label for="bnd1">Boundary 1</label>
<input type="range" id="dist1" min="1" max="500" step="1">
<label for="dist1">Dist before lens 1</label>
</div>
<div>
<input type="range" id="bnd2" min="100" max="2000" step="10">
<label for="bnd2">Boundary 2</label>
<input type="range" id="thk1" min="2" max="50" step="1">
<label for="thk1">Thickness 1</label>
</div>
<div>
<input type="range" id="bnd3" min="100" max="2000" step="10">
<label for="bnd3">Boundary 3</label>
<input type="range" id="dist2" min="1" max="500" step="1">
<label for="dist2">Dist before lens 2</label>
</div>
<div>
<input type="range" id="bnd4" min="100" max="2000" step="10">
<label for="bnd4">Boundary 4</label>
<input type="range" id="thk2" min="2" max="50" step="1">
<label for="thk2">Thickness 2</label>
</div>
<div>
<input type="range" id="bnd5" min="100" max="2000" step="10">
<label for="bnd5">Boundary 5</label>
<input type="range" id="dist3" min="1" max="500" step="1">
<label for="dist3">Dist before lens 3</label>
</div>
<div>
<input type="range" id="bnd6" min="100" max="2000" step="10">
<label for="bnd6">Boundary 6</label>
<input type="range" id="thk3" min="2" max="50" step="1">
<label for="thk3">Thickness 3</label>
</div>
<div>
<input type="range" id="sensor" min="100" max="1000" step="1">
<label for="sensor">Sensor location</label>
</div>
</div>
<div>
<canvas id="canvas" width="1000" height="300"></canvas>
</div>
<div>
<p>Measurements</p>
<p>Effective focal length: <span id="focal_l">...</span></p>
<p>Highlight height (must be zero for EFL to be valid): <span id="hlht">...</span></p>
<p>Back focal distance: <span id="bfd">...</span></p>
</div>
div {
/* border: solid 1px; */
}
const draw_axis = (ctx) => {
ctx.beginPath();
ctx.strokeStyle = "black"
ctx.moveTo(0, 150);
ctx.lineTo(1000, 150);
ctx.closePath();
ctx.stroke();
}
const draw_aligned_vertical_boundary = (ctx, pos) => {
ctx.beginPath();
ctx.strokeStyle = "black"
ctx.moveTo(pos, 0);
ctx.lineTo(pos, 300);
ctx.closePath();
ctx.stroke();
}
const draw_aligned_circular_boundary = (ctx, origin, center) => {
const x = origin + center;
const y = 150;
const radius = Math.abs(center);
ctx.beginPath();
ctx.strokeStyle = "black"
ctx.arc(x, y, radius, Math.PI/2, Math.PI*3/2, center < 0 );
ctx.stroke();
}
const draw_raylike = (ctx, start, direction, color, scale=50) => {
ctx.beginPath();
ctx.fillStyle = color;
ctx.arc(start.x, 150-start.y, 3, 0, 2 * Math.PI);
ctx.fill();
const rx = direction.x;
const ry = -direction.y;
const mag = Math.sqrt((rx*rx)+(ry*ry))
const nx = rx / mag * scale;
const ny = ry / mag * scale;
ctx.beginPath();
ctx.strokeStyle = color;
ctx.moveTo(start.x, 150-start.y);
ctx.lineTo(start.x + nx, 150-start.y + ny);
ctx.stroke();
}
const draw_ray = (ctx, start, direction) => draw_raylike(ctx, start, direction, 'red', 25)
const draw_normal = (ctx, start, direction) => draw_raylike(ctx, start, direction, 'green', 10)
const draw_highlight_ray = (ctx, start, direction) => draw_raylike(ctx, start, direction, 'grey', 50)
const intersect_ray_circle = (ray, circle) => {
const sqrt = Math.sqrt;
const abs = Math.abs
const sq = (x) => Math.pow(x,2)
// move circle to origin
const x1 = ray.start.x - circle.x
const x2 = x1 + ray.direction.x
const y1 = ray.start.y - circle.y
const y2 = y1 + ray.direction.y
const r = circle.r
// intersection of circle at origin and line defined by two points
// https://mathworld.wolfram.com/Circle-LineIntersection.html
const dx = x2 - x1
const dy = y2 - y1
const dr = sqrt(sq(dx) + sq(dy))
const D = x1*y2 - x2*y1
const desc = sq(r) * sq(dr) - sq(D);
// console.log("desc ", desc)
if( desc < 0 )
return "no intersection"
const s = dy < 0 ? -1 : 1
const x = (D*dy+s*dx*sqrt(desc)) / sq(dr)
const x_ = (D*dy-s*dx*sqrt(desc)) / sq(dr)
const y = (-1*D*dx+abs(dy)*sqrt(desc)) / sq(dr)
const y_ = (-1*D*dx-abs(dy)*sqrt(desc)) / sq(dr)
//console.log(`y = [ -1*${D}*${dx}+abs(${dy})*sqrt(${desc}) ] / ${dr}^2`)
// console.log(`[${-1*D*dx}+${abs(dy)*sqrt(desc)}]/${sq(dr)}`)
// move back from origin
return [
{x: x + circle.x, y: y + circle.y},
{x: x_ + circle.x, y: y_ + circle.y},
]
}
const intersect_ray_line = (ray, line) => {
return intersect_ray_ray( ray, { start: {x: line.x, y:0}, direction: {x:0, y:100} })
}
const intersect_ray_ray = (rayA, rayB) => {
const x1 = rayA.start.x, y1 = rayA.start.y;
const x2 = x1 + rayA.direction.x, y2 = y1 + rayA.direction.y;
const x3 = rayB.start.x, y3 = rayB.start.y;
const x4 = x3 + rayB.direction.x, y4 = y3 + rayB.direction.y;
const D = (x1 - x2) * (y3 - y4) - (y1 - y2) * (x3 - x4)
const x = ((x1*y2 - y1*x2)*(x3-x4) - (x1-x2)*(x3*y4 - y3*x4)) / D
const y = ((x1*y2 - y1*x2)*(y3-y4) - (y1-y2)*(x3*y4 - y3*x4)) / D
return [{x: x, y: y}]
}
const normal_at_circular_boundary = (point, circle, flip = false) => {
// flip the normal for when we're doing concave intersections
if(flip) {
return {
x: circle.x - point.x,
y: circle.y - point.y
}
}
// we assume the point is on the circle
const normal = {
x: point.x - circle.x,
y: point.y - circle.y
}
return normal // I guess that's it... draw a line from the center of the circle to the point
}
const refracted_ray = (n1, n2, incoming, norm) => {
// https://en.wikipedia.org/wiki/Snell's_law
// snell's law: sin A2 / sin A1 = n1 / n2
// n1 / n2 * sin A1 = sin A2
// https://physics.stackexchange.com/questions/435512/snells-law-in-vector-form
// vector form: norm x v2 = u( norm x v1), u = n1 / n2
// moving in->out ie: n1 -> n2
const sin = Math.sin
const cos = Math.cos
const asin = Math.asin
const atan2 = Math.atan2
const th_in = atan2(-incoming.y, -incoming.x)
const th_norm = atan2(norm.y, norm.x)
const th_1 = th_in - th_norm
const th_norm_out = atan2(-norm.y, -norm.x)
const th_2 = asin( n1 / n2 * sin(th_1))
const th_out = th_2 + th_norm_out
return {
x: cos(th_out),
y: sin(th_out)
}
}
const dist_to = (A, B) => {
return Math.sqrt( Math.pow(B.x - A.x, 2) + Math.pow(B.y - A.y,2))
}
const closest_intersection = (start, intrs) => {
let ret = intrs[0]
let shortest_distance = Infinity
intrs.forEach((intr) => {
const dist = dist_to(start, intr)
if( dist < shortest_distance) {
shortest_distance = dist
ret = intr
}
})
return ret
}
const cast_to_boundary = (ctx, cast_ray, boundary) => {
let intrs
if(boundary.circle) {
intrs = intersect_ray_circle(
cast_ray,
boundary.circle
)
if( typeof(intrs) == "string")
return intrs
} else if( boundary.line) {
intrs = intersect_ray_line(cast_ray, boundary.line)
} else {
return "Unknown boundary type"
}
const closest_intr = closest_intersection(cast_ray.start, intrs)
// if( boundary.line) console.log(intrs)
const n = boundary.normal_at(closest_intr)
draw_normal(ctx, closest_intr, n)
// if( boundary.line) console.log(closest_intr)
const a = refracted_ray( boundary.n1, boundary.n2, cast_ray.direction, n)
// draw_ray(ctx, closest_intr, a)
return {
start: closest_intr,
direction: a
}
}
const make_meniscus_boundaries = (index, thickness, first_face_x, first_face_r, second_face_r) => {
const ffc = first_face_x + first_face_r
const sfc = first_face_x + thickness + second_face_r
const boundaries = [
{
n1: 1.0,
n2: index,
circle: {x: ffc, y: 0, r: first_face_r},
normal_at: (p) => normal_at_circular_boundary(p, {x: ffc, y: 0, r: first_face_r}),
x_crossing: (ffc - first_face_r)
},
{
n1: index,
n2: 1.0,
circle: {x: sfc, y: 0, r: second_face_r},
normal_at: (p) => normal_at_circular_boundary(p, {x: sfc, y: 0, r: second_face_r}),
x_crossing: (sfc - second_face_r)
}
]
draw_aligned_circular_boundary(ctx, boundaries[0].x_crossing, boundaries[0].circle.r);
draw_aligned_circular_boundary(ctx, boundaries[1].x_crossing, boundaries[1].circle.r);
return boundaries
}
const make_biconvex_boundaries = (index, thickness, first_face_x, first_face_r, second_face_r) => {
const ffc = first_face_x + first_face_r
const sfc = first_face_x + thickness - second_face_r
const boundaries = [
{
n1: 1.0,
n2: index,
circle: {x: ffc, y: 0, r: first_face_r},
normal_at: (p) => normal_at_circular_boundary(p, {x: ffc, y: 0, r: first_face_r}),
x_crossing: (ffc - first_face_r)
},
{
n1: index,
n2: 1.0,
circle: {x: sfc, y: 0, r: second_face_r},
normal_at: (p) => normal_at_circular_boundary(p, {x: sfc, y: 0, r: second_face_r}, true),
x_crossing: (first_face_x + thickness)
}
]
draw_aligned_circular_boundary(ctx, boundaries[0].x_crossing, boundaries[0].circle.r);
draw_aligned_circular_boundary(ctx, boundaries[1].x_crossing, -boundaries[1].circle.r);
return boundaries
}
const make_biconcave_boundaries = (index, thickness, first_face_x, first_face_r, second_face_r) => {
const ffc = first_face_x - first_face_r
const sfc = first_face_x + thickness + second_face_r
const boundaries = [
{
n1: 1.0,
n2: index,
circle: {x: ffc, y: 0, r: first_face_r},
normal_at: (p) => normal_at_circular_boundary(p, {x: ffc, y: 0, r: first_face_r}, true),
x_crossing: (ffc + first_face_r)
},
{
n1: index,
n2: 1.0,
circle: {x: sfc, y: 0, r: second_face_r},
normal_at: (p) => normal_at_circular_boundary(p, {x: sfc, y: 0, r: second_face_r}, false),
x_crossing: (first_face_x + thickness)
}
]
draw_aligned_circular_boundary(ctx, boundaries[0].x_crossing, -boundaries[0].circle.r);
draw_aligned_circular_boundary(ctx, boundaries[1].x_crossing, boundaries[1].circle.r);
return boundaries
}
const draw_entire_diagram = (ctx) => {
const canvas = document.getElementById('canvas')
ctx.clearRect(0, 0, canvas.width, canvas.height);
// center line and end stops
draw_axis(ctx);
draw_aligned_vertical_boundary(ctx, mm(0));
draw_aligned_vertical_boundary(ctx, mm(1000));
// an image or a target or similar
draw_aligned_vertical_boundary(ctx, mm(10));
const boundaries = []
let x1 = 0
let x2 = 0
let x3 = 0
let length = mm(10)
en1(()=>{
x1 = mm(10) + dist1();
boundaries.push( ...make_biconvex_boundaries(1.61, thk1(), x1, bnd1(), bnd2()) )
length += dist1() + thk1()
})
en2(()=>{
x2 = length + dist2();
boundaries.push( ...make_biconcave_boundaries(1.62, thk2(), x2, bnd3(), bnd4()) )
length += dist2() + thk2()
})
en3(()=>{
x3 = length + dist3();
boundaries.push( ...make_biconvex_boundaries(1.61, thk3(), x3, bnd5(), bnd6()) )
length += dist3() + thk3()
})
// target
draw_aligned_vertical_boundary(ctx, sensor())
boundaries.push({
n1: 1,
n2: 1,
line: {x: sensor(), y: 0},
normal_at: (p) => ({x:-1, y:0})
})
// all the rays
for( let y = mm(-50); y <= mm(50); y += (mm(50) - mm(-50))/num_rays()) {
const cast_ray = {start: {x: mm(10), y: y}, direction: {x:10, y:0}}
let next = cast_ray
for( let i = 0; i < boundaries.length; i += 1) {
draw_ray(ctx, next.start, next.direction)
if( typeof(next) == "string")
continue;
if( Math.abs(next.start.y) > mm(75))
continue;
next = cast_to_boundary(ctx, next, boundaries[i])
}
}
// tracer ray to measure effective focal length
const cast_ray = { start: {x:mm(0), y:mm(15)}, direction: {x:1, y:0}}
let next = cast_ray
draw_highlight_ray(ctx, next.start, next.direction)
for( let i = 0; i < boundaries.length; i += 1) {
next = cast_to_boundary(ctx, next, boundaries[i])
}
draw_highlight_ray(ctx, next.start, { x: -next.direction.x, y: -next.direction.y} )
const pint = intersect_ray_ray(cast_ray, next)
draw_highlight_ray(ctx, {x: pint[0].x, y: pint[0].y}, {x:0, y:mm(-50)})
// update labels
update_measurements(length, pint[0].x, next.start.y)
}
const update_measurements = (length, efl, highlight_height) => {
document.querySelector("span#focal_l").innerText = efl
document.querySelector("span#bfd").innerText = sensor() - length
document.querySelector("span#hlht").innerText = highlight_height
}
const setupSlider = (ctx, slider, initValue) => {
// slider.min = 0
// slider.max = max
// slider.step = 10
slider.value = initValue
slider.addEventListener('input', () => draw_entire_diagram(ctx))
return () => {
return Number(slider.value)
}
}
const setupCheckbox = (ctx, checkbox) => {
checkbox.addEventListener('click', () => draw_entire_diagram(ctx))
return (f) => {
if(checkbox.checked) {
f()
}
}
}
const canvas = document.getElementById('canvas');
const ctx = canvas.getContext('2d');
// const global_scale = (x) => (x * 2)
// const reverse_global_scale = (x) => ( x / 2 )
const mm = (x) => ( x)
const num_rays = setupSlider(ctx, document.querySelector("input#rays"), 4)
const bnd1 = setupSlider(ctx, document.querySelector("input#bnd1"), mm(40.1))
const bnd2 = setupSlider(ctx, document.querySelector("input#bnd2"), mm(537))
const bnd3 = setupSlider(ctx, document.querySelector("input#bnd3"), mm(47))
const bnd4 = setupSlider(ctx, document.querySelector("input#bnd4"), mm(40))
const bnd5 = setupSlider(ctx, document.querySelector("input#bnd5"), mm(235.5))
const bnd6 = setupSlider(ctx, document.querySelector("input#bnd6"), mm(37.9))
const dist1 = setupSlider(ctx, document.querySelector("input#dist1"), mm(10+100))
const dist2 = setupSlider(ctx, document.querySelector("input#dist2"), mm(10))
const dist3 = setupSlider(ctx, document.querySelector("input#dist3"), mm(10.8))
const thk1 = setupSlider(ctx, document.querySelector("input#thk1"), mm(6))
const thk2 = setupSlider(ctx, document.querySelector("input#thk2"), mm(1))
const thk3 = setupSlider(ctx, document.querySelector("input#thk3"), mm(6))
const en1 = setupCheckbox(ctx, document.querySelector("input#en1"))
const en2 = setupCheckbox(ctx, document.querySelector("input#en2"))
const en3 = setupCheckbox(ctx, document.querySelector("input#en3"))
const sensor = setupSlider(ctx, document.querySelector("input#sensor"), //mm(396))
//mm(10+100+ 6+10+1+10.8+6+85.3))
mm(10+100+ 6+10+1+10.8+6+85.3*2))
draw_entire_diagram(ctx)
Also see: Tab Triggers