HTML preprocessors can make writing HTML more powerful or convenient. For instance, Markdown is designed to be easier to write and read for text documents and you could write a loop in Pug.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. So you don't have access to higher-up elements like the <html>
tag. If you want to add classes there that can affect the whole document, this is the place to do it.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. If you need things in the <head>
of the document, put that code here.
The resource you are linking to is using the 'http' protocol, which may not work when the browser is using https.
CSS preprocessors help make authoring CSS easier. All of them offer things like variables and mixins to provide convenient abstractions.
It's a common practice to apply CSS to a page that styles elements such that they are consistent across all browsers. We offer two of the most popular choices: normalize.css and a reset. Or, choose Neither and nothing will be applied.
To get the best cross-browser support, it is a common practice to apply vendor prefixes to CSS properties and values that require them to work. For instance -webkit-
or -moz-
.
We offer two popular choices: Autoprefixer (which processes your CSS server-side) and -prefix-free (which applies prefixes via a script, client-side).
Any URLs added here will be added as <link>
s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.
You can apply CSS to your Pen from any stylesheet on the web. Just put a URL to it here and we'll apply it, in the order you have them, before the CSS in the Pen itself.
You can also link to another Pen here (use the .css
URL Extension) and we'll pull the CSS from that Pen and include it. If it's using a matching preprocessor, use the appropriate URL Extension and we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
JavaScript preprocessors can help make authoring JavaScript easier and more convenient.
Babel includes JSX processing.
Any URL's added here will be added as <script>
s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.
You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.
If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
Search for and use JavaScript packages from npm here. By selecting a package, an import
statement will be added to the top of the JavaScript editor for this package.
Using packages here is powered by esm.sh, which makes packages from npm not only available on a CDN, but prepares them for native JavaScript ESM usage.
All packages are different, so refer to their docs for how they work.
If you're using React / ReactDOM, make sure to turn on Babel for the JSX processing.
If active, Pens will autosave every 30 seconds after being saved once.
If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.
If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.
Visit your global Editor Settings.
* {
margin: 0;
padding: 0;
background: #000;
color: #fff;
}
// Create the scene and a camera to view it
var scene = new THREE.Scene();
/**
* Camera
**/
// Specify the portion of the scene visiable at any time (in degrees)
var fieldOfView = 75;
// Specify the camera's aspect ratio
var aspectRatio = window.innerWidth / window.innerHeight;
// Specify the near and far clipping planes. Only objects
// between those planes will be rendered in the scene
// (these values help control the number of items rendered
// at any given time)
var nearPlane = 0.1;
var farPlane = 1000;
// Use the values specified above to create a camera
var camera = new THREE.PerspectiveCamera(
fieldOfView, aspectRatio, nearPlane, farPlane
);
// Finally, set the camera's position in the z-dimension
camera.position.z = 5;
/**
* Renderer
**/
// Create the canvas with a renderer
var renderer = new THREE.WebGLRenderer({antialias: true});
// Specify the size of the canvas
renderer.setSize( window.innerWidth, window.innerHeight );
// Add the canvas to the DOM
document.body.appendChild( renderer.domElement );
/**
* Image
**/
// Create a texture loader so we can load our image file
var loader = new THREE.TextureLoader();
// Load an image file into a custom material
var material = new THREE.MeshBasicMaterial({
map: loader.load('https://s3.amazonaws.com/duhaime/blog/tsne-webgl/assets/cat.jpg')
});
/*
To build a custom geometry, we'll use the THREE.Geometry() class, which is the base class for most higher-order geometries
*/
var geometry = new THREE.Geometry();
/*
Now we need to push some vertices into that geometry to identify the coordinates the geometry should cover
*/
// Identify the image size
var imageSize = {width: 10, height: 7.5};
// Identify the x, y, z coords where the image should be placed
var coords = {x: -5, y: -3.75, z: 0};
// Add one vertex for each corner of the image, using the
// following order: lower left, lower right, upper right, upper left
geometry.vertices.push(
new THREE.Vector3(
coords.x,
coords.y,
coords.z
),
new THREE.Vector3(
coords.x+imageSize.width,
coords.y,
coords.z
),
new THREE.Vector3(
coords.x+imageSize.width,
coords.y+imageSize.height,
coords.z
),
new THREE.Vector3(
coords.x,
coords.y+imageSize.height,
coords.z
)
);
// Add the first face (the lower-right triangle)
var faceOne = new THREE.Face3(
geometry.vertices.length-4,
geometry.vertices.length-3,
geometry.vertices.length-2
)
// Add the second face (the upper-left triangle)
var faceTwo = new THREE.Face3(
geometry.vertices.length-4,
geometry.vertices.length-2,
geometry.vertices.length-1
)
// Add those faces to the geometry
geometry.faces.push(faceOne, faceTwo);
/*
Finally, identify the facevertex uvs to use for this face
*/
// Map the region of the image described by the lower-left,
// lower-right, and upper-right vertices to the first face
// of the geometry
geometry.faceVertexUvs[0].push([
new THREE.Vector2(0,0),
new THREE.Vector2(1,0),
new THREE.Vector2(1,1)
]);
// Map the region of the image described by the lower-left,
// upper-right, and upper-left vertices to the second face
// of the geometry
geometry.faceVertexUvs[0].push([
new THREE.Vector2(0,0),
new THREE.Vector2(1,1),
new THREE.Vector2(0,1)
]);
// Combine our image geometry and material into a mesh
var mesh = new THREE.Mesh(geometry, material);
// Set the position of the image mesh in the x,y,z dimensions
mesh.position.set(0,0,0)
// Add the image to the scene
scene.add(mesh);
/**
* Lights
**/
// Add a point light with #fff color, .7 intensity, and 0 distance
var light = new THREE.PointLight( 0xffffff, 1, 0 );
// Specify the light's position
light.position.set(1, 1, 100);
// Add the light to the scene
scene.add(light)
/**
* Render!
**/
// The main animation function that re-renders the scene each animation frame
function animate() {
requestAnimationFrame( animate );
renderer.render( scene, camera );
}
animate();
Also see: Tab Triggers