HTML preprocessors can make writing HTML more powerful or convenient. For instance, Markdown is designed to be easier to write and read for text documents and you could write a loop in Pug.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. So you don't have access to higher-up elements like the <html>
tag. If you want to add classes there that can affect the whole document, this is the place to do it.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. If you need things in the <head>
of the document, put that code here.
The resource you are linking to is using the 'http' protocol, which may not work when the browser is using https.
CSS preprocessors help make authoring CSS easier. All of them offer things like variables and mixins to provide convenient abstractions.
It's a common practice to apply CSS to a page that styles elements such that they are consistent across all browsers. We offer two of the most popular choices: normalize.css and a reset. Or, choose Neither and nothing will be applied.
To get the best cross-browser support, it is a common practice to apply vendor prefixes to CSS properties and values that require them to work. For instance -webkit-
or -moz-
.
We offer two popular choices: Autoprefixer (which processes your CSS server-side) and -prefix-free (which applies prefixes via a script, client-side).
Any URLs added here will be added as <link>
s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.
You can apply CSS to your Pen from any stylesheet on the web. Just put a URL to it here and we'll apply it, in the order you have them, before the CSS in the Pen itself.
You can also link to another Pen here (use the .css
URL Extension) and we'll pull the CSS from that Pen and include it. If it's using a matching preprocessor, use the appropriate URL Extension and we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
JavaScript preprocessors can help make authoring JavaScript easier and more convenient.
Babel includes JSX processing.
Any URL's added here will be added as <script>
s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.
You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.
If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
Search for and use JavaScript packages from npm here. By selecting a package, an import
statement will be added to the top of the JavaScript editor for this package.
Using packages here is powered by esm.sh, which makes packages from npm not only available on a CDN, but prepares them for native JavaScript ESM usage.
All packages are different, so refer to their docs for how they work.
If you're using React / ReactDOM, make sure to turn on Babel for the JSX processing.
If active, Pens will autosave every 30 seconds after being saved once.
If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.
If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.
Visit your global Editor Settings.
<footer class="footer v-dark">
Made with 😘 by <a class="footer-anchor" target="_blank" href="//codepen.io/Fahscinate">Mo</a>
</footer>
@import url('https://fonts.googleapis.com/css?family=Roboto');
$black: #343436;
$white: #fff;
$yellow: #fcd000;
*, *:before, *:after {
margin: 0;
padding: 0;
box-sizing: border-box;
}
html, body, canvas {
width: 100%;
height: 100%;
overflow: hidden;
}
body {
background: radial-gradient(hsl(255, 18%, 35%), hsl(198, 32%, 8%));
}
.footer {
position: fixed;
right: 0;
bottom: 0;
left: 0;
padding: 10px 10px;
text-align: right;
font-family: 'Roboto', sans-serif;
font-size: 12px;
&.v-dark {
background-color: $black;
color: $white;
-webkit-font-smoothing: antialiased;
-moz-osx-font-smoothing: grayscale;
}
&.v-light {
background-color: $white;
color: $black;
}
}
.footer-anchor {
display: inline-block;
margin-left: 5px;
padding: 2px 4px;
color: $black;
text-decoration: none;
background-color: $yellow;
border-radius: 4px;
opacity: 1;
transition: opacity 0.2s;
&:hover {
opacity: 0.6;
}
}
let scene;
let camera;
let renderer;
let controls;
let zebra;
let landscape;
let mixer;
let prevTime;
const horse = 'https://s3-us-west-2.amazonaws.com/s.cdpn.io/51676/horse.json';
class ShieldMaterial extends THREE.ShaderMaterial {
constructor(params) {
// Make uniforms unique per instance
const shader = Object.assign({}, ShieldMaterial.shader, {
uniforms: Object.assign({}, ShieldMaterial.shader.uniforms, {
color: { value: params.color },
offset: { value: params.offset }
})
});
// console.log(scene);
super(shader);
this.loop = timestamp => {
window.requestAnimationFrame(this.loop);
this.uniforms.time.value = timestamp;
};
window.requestAnimationFrame(this.loop);
}
}
ShieldMaterial.shader = {
morphTargets: true,
vertexShader: `
#define GLSLIFY 1
varying vec2 vUv;
varying vec3 vPosition;
#include <morphtarget_pars_vertex>
void main()
{
#include <begin_vertex>
#include <morphtarget_vertex>
vUv = uv;
gl_Position = projectionMatrix * modelViewMatrix * vec4( transformed, 1.0 );
vPosition = position;
}
`,
fragmentShader: `
#ifdef GL_ES
precision mediump float;
#define GLSLIFY 1
#endif
uniform float time;
uniform float offset;
uniform vec3 color;
varying vec3 vPosition;
varying vec2 vUv;
//
// Description : Array and textureless GLSL 2D/3D/4D simplex
// noise functions.
// Author : Ian McEwan, Ashima Arts.
// Maintainer : stegu
// Lastmod : 20110822 (ijm)
// License : Copyright (C) 2011 Ashima Arts. All rights reserved.
// Distributed under the MIT License. See LICENSE file.
// https://github.com/ashima/webgl-noise
// https://github.com/stegu/webgl-noise
//
vec3 mod289(vec3 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 mod289(vec4 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 permute(vec4 x) {
return mod289(((x*34.0)+1.0)*x);
}
vec4 taylorInvSqrt(vec4 r)
{
return 1.79284291400159 - 0.85373472095314 * r;
}
float snoise(vec3 v)
{
const vec2 C = vec2(1.0/6.0, 1.0/3.0) ;
const vec4 D = vec4(0.0, 0.5, 1.0, 2.0);
// First corner
vec3 i = floor(v + dot(v, C.yyy) );
vec3 x0 = v - i + dot(i, C.xxx) ;
// Other corners
vec3 g_0 = step(x0.yzx, x0.xyz);
vec3 l = 1.0 - g_0;
vec3 i1 = min( g_0.xyz, l.zxy );
vec3 i2 = max( g_0.xyz, l.zxy );
// x0 = x0 - 0.0 + 0.0 * C.xxx;
// x1 = x0 - i1 + 1.0 * C.xxx;
// x2 = x0 - i2 + 2.0 * C.xxx;
// x3 = x0 - 1.0 + 3.0 * C.xxx;
vec3 x1 = x0 - i1 + C.xxx;
vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y
vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y
// Permutations
i = mod289(i);
vec4 p = permute( permute( permute(
i.z + vec4(0.0, i1.z, i2.z, 1.0 ))
+ i.y + vec4(0.0, i1.y, i2.y, 1.0 ))
+ i.x + vec4(0.0, i1.x, i2.x, 1.0 ));
// Gradients: 7x7 points over a square, mapped onto an octahedron.
// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
float n_ = 0.142857142857; // 1.0/7.0
vec3 ns = n_ * D.wyz - D.xzx;
vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7)
vec4 x_ = floor(j * ns.z);
vec4 y_ = floor(j - 7.0 * x_ ); // mod(j,N)
vec4 x = x_ *ns.x + ns.yyyy;
vec4 y = y_ *ns.x + ns.yyyy;
vec4 h = 1.0 - abs(x) - abs(y);
vec4 b0 = vec4( x.xy, y.xy );
vec4 b1 = vec4( x.zw, y.zw );
//vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;
//vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;
vec4 s0 = floor(b0)*2.0 + 1.0;
vec4 s1 = floor(b1)*2.0 + 1.0;
vec4 sh = -step(h, vec4(0.0));
vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ;
vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ;
vec3 p0 = vec3(a0.xy,h.x);
vec3 p1 = vec3(a0.zw,h.y);
vec3 p2 = vec3(a1.xy,h.z);
vec3 p3 = vec3(a1.zw,h.w);
//Normalise gradients
vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
p0 *= norm.x;
p1 *= norm.y;
p2 *= norm.z;
p3 *= norm.w;
// Mix final noise value
vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0);
m = m * m;
return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1),
dot(p2,x2), dot(p3,x3) ) );
}
float perlin3( vec3 coord ) {
// float n = 0.0;
float n = 10.0 * abs( snoise( coord ));
return n;
}
void main( void ) {
vec2 uv = (vPosition.zx / vec2(100.0, 100.0));
float change = 10.0;
float changeCoord = 14.0;
if(color.r > 0.1) {
change = time * 0.001;
changeCoord = time * 0.0001;
}
uv.x = uv.x + change;
vec3 coord = vec3( uv.xy, changeCoord );
float n = perlin3( coord.xyz );
vec3 colors = vec3(
(255.0 * sin(n * 6.0))
);
float head = smoothstep(115.0,0.0,vPosition.z) * smoothstep(-100.0,800.0,vPosition.z);
vec4 zebrahead = vec4(color, 1.0);
if(colors.r < 0.1) colors = color;
gl_FragColor = mix(zebrahead, vec4( colors.r, colors.g, colors.b, 1.0 ), head);
}
`,
uniforms: {
time: { value: performance.now() }
}
};
class LandscapeMaterial extends THREE.ShaderMaterial {
constructor(params) {
// Make uniforms unique per instance
const shader = Object.assign({}, LandscapeMaterial.shader, {
uniforms: Object.assign({}, LandscapeMaterial.shader.uniforms, {
color: { value: params.color }
})
});
// console.log(scene);
super(shader);
this.loop = timestamp => {
window.requestAnimationFrame(this.loop);
this.uniforms.time.value = timestamp;
};
window.requestAnimationFrame(this.loop);
}
}
LandscapeMaterial.shader = {
blending: THREE.AdditiveBlending,
transparent: true,
// wireframe: true,
vertexShader: `
#define GLSLIFY 1
uniform float time;
varying vec3 vPosition;
//
// GLSL textureless classic 3D noise "cnoise",
// with an RSL-style periodic variant "pnoise".
// Author: Stefan Gustavson (stefan.gustavson@liu.se)
// Version: 2011-10-11
//
// Many thanks to Ian McEwan of Ashima Arts for the
// ideas for permutation and gradient selection.
//
// Copyright (c) 2011 Stefan Gustavson. All rights reserved.
// Distributed under the MIT license. See LICENSE file.
// https://github.com/ashima/webgl-noise
//
vec3 mod289(vec3 x)
{
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 mod289(vec4 x)
{
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 permute(vec4 x)
{
return mod289(((x*34.0)+1.0)*x);
}
vec4 taylorInvSqrt(vec4 r)
{
return 1.79284291400159 - 0.85373472095314 * r;
}
vec3 fade(vec3 t) {
return t*t*t*(t*(t*6.0-15.0)+10.0);
}
float cnoise(vec3 P)
{
vec3 Pi0 = floor(P);
// Integer part for indexing
vec3 Pi1 = Pi0 + vec3(1.0);
// Integer part + 1
Pi0 = mod289(Pi0);
Pi1 = mod289(Pi1);
vec3 Pf0 = fract(P);
// Fractional part for interpolation
vec3 Pf1 = Pf0 - vec3(1.0);
// Fractional part - 1.0
vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
vec4 iy = vec4(Pi0.yy, Pi1.yy);
vec4 iz0 = Pi0.zzzz;
vec4 iz1 = Pi1.zzzz;
vec4 ixy = permute(permute(ix) + iy);
vec4 ixy0 = permute(ixy + iz0);
vec4 ixy1 = permute(ixy + iz1);
vec4 gx0 = ixy0 * (1.0 / 7.0);
vec4 gy0 = fract(floor(gx0) * (1.0 / 7.0)) - 0.5;
gx0 = fract(gx0);
vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0);
vec4 sz0 = step(gz0, vec4(0.0));
gx0 -= sz0 * (step(0.0, gx0) - 0.5);
gy0 -= sz0 * (step(0.0, gy0) - 0.5);
vec4 gx1 = ixy1 * (1.0 / 7.0);
vec4 gy1 = fract(floor(gx1) * (1.0 / 7.0)) - 0.5;
gx1 = fract(gx1);
vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1);
vec4 sz1 = step(gz1, vec4(0.0));
gx1 -= sz1 * (step(0.0, gx1) - 0.5);
gy1 -= sz1 * (step(0.0, gy1) - 0.5);
vec3 g000 = vec3(gx0.x,gy0.x,gz0.x);
vec3 g100 = vec3(gx0.y,gy0.y,gz0.y);
vec3 g010 = vec3(gx0.z,gy0.z,gz0.z);
vec3 g110 = vec3(gx0.w,gy0.w,gz0.w);
vec3 g001 = vec3(gx1.x,gy1.x,gz1.x);
vec3 g101 = vec3(gx1.y,gy1.y,gz1.y);
vec3 g011 = vec3(gx1.z,gy1.z,gz1.z);
vec3 g111 = vec3(gx1.w,gy1.w,gz1.w);
vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
g000 *= norm0.x;
g010 *= norm0.y;
g100 *= norm0.z;
g110 *= norm0.w;
vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
g001 *= norm1.x;
g011 *= norm1.y;
g101 *= norm1.z;
g111 *= norm1.w;
float n000 = dot(g000, Pf0);
float n100 = dot(g100, vec3(Pf1.x, Pf0.yz));
float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z));
float n110 = dot(g110, vec3(Pf1.xy, Pf0.z));
float n001 = dot(g001, vec3(Pf0.xy, Pf1.z));
float n101 = dot(g101, vec3(Pf1.x, Pf0.y, Pf1.z));
float n011 = dot(g011, vec3(Pf0.x, Pf1.yz));
float n111 = dot(g111, Pf1);
vec3 fade_xyz = fade(Pf0);
vec4 n_z = mix(vec4(n000, n100, n010, n110), vec4(n001, n101, n011, n111), fade_xyz.z);
vec2 n_yz = mix(n_z.xy, n_z.zw, fade_xyz.y);
float n_xyz = mix(n_yz.x, n_yz.y, fade_xyz.x);
return 2.2 * n_xyz;
}
mat4 rotateMatrixX(float radian) {
return mat4(
1.0, 0.0, 0.0, 0.0,
0.0, cos(radian), -sin(radian), 0.0,
0.0, sin(radian), cos(radian), 0.0,
0.0, 0.0, 0.0, 1.0
);
}
mat4 rotateMatrixY(float radian) {
return mat4(
cos(radian), 0.0, sin(radian), 0.0,
0.0, 1.0, 0.0, 0.0,
-sin(radian), 0.0, cos(radian), 0.0,
0.0, 0.0, 0.0, 1.0
);
}
mat4 rotateMatrixZ(float radian) {
return mat4(
cos(radian), -sin(radian), 0.0, 0.0,
sin(radian), cos(radian), 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0
);
}
void main(void) {
float sin1 = sin(radians(position.y / 128.0 * 90.0));
//speed
vec3 noisePosition = position + vec3(-time * 0.05, 0.0, 0.0);
float noise1 = cnoise(noisePosition * 0.02);
float noise2 = cnoise(noisePosition * 0.08);
float noise3 = cnoise(noisePosition * 0.4);
vec3 lastPosition = position + vec3(0.0, 0.0,
noise1 * sin1 * 8.0
+ noise2 * sin1 * 8.0
+ noise2 * sin1 * 8.0
+ noise3 * sin1 * 2.0
+ noise3 * sin1 * 1.0
+ pow(sin1, 2.0) * 40.0);
vPosition = lastPosition;
vec4 mvPosition = modelViewMatrix * vec4( lastPosition, 1.0 );
// gl_PointSize = floor(20.0 * ( 100.0 / -mvPosition.z ));
// gl_PointSize = 2.0 * (1.0+ 300.0 / length( mvPosition.xyz ) );
gl_Position = projectionMatrix * mvPosition;
}
`,
fragmentShader: `
uniform sampler2D texture;
precision highp float;
#define GLSLIFY 1
varying vec3 vPosition;
void main ()
{
float dist = sqrt(dot (vPosition, vPosition));
mediump vec4 final_color;
final_color.rgb = vec3(237.0 / 255.0, 201.0 / 255.0, 175.0 / 255.0);
// final_color.rgb = vec3(194.0 / 255.0, 178.0 / 255.0, 128.0 / 255.0);
final_color.a = (((80.0 - dist) / 70.0) * 1.0);
// gl_FragColor = final_color.a * (vec4(final_color.rgb, 1.0));
float grass = smoothstep(10.0,40.0,dist);
vec4 grassfield = vec4(96.0/ 255.0, 128.0/ 255.0, 56.0/ 255.0, 1.0);
gl_FragColor = mix(grassfield, final_color.a * (vec4(final_color.rgb, 1.0)), grass);
// if ( gl_FragColor.a > 0.9 ) gl_FragColor.rgb = vec3(96.0/ 255.0, 128.0/ 255.0, 56.0/ 255.0);
}
`,
uniforms: {
time: { value: performance.now() }
}
};
function init() {
initScene();
loadModel().then(() => {
requestAnimationFrame(loop);
});
window.addEventListener('resize', onResize);
}
function initScene() {
prevTime = Date.now();
scene = new THREE.Scene();
camera = new THREE.PerspectiveCamera(20, window.innerWidth / window.innerHeight, 1, 10000);
camera.position.set(0, 400, 1200);
var vector = new THREE.Vector3(0, 100, 0);
// vector.applyQuaternion( camera.quaternion );
camera.target = vector;
// camera.updateMatrix();
scene.add(camera);
camera.updateProjectionMatrix();
renderer = new THREE.WebGLRenderer({
alpha: true,
// antialias: true,
pixelRatio: window.devicePixelRatio,
antialias: window.devicePixelRatio === 1,
});
renderer.setSize(window.innerWidth, window.innerHeight);
controls = new THREE.OrbitControls(camera, renderer.domElement);
document.body.appendChild(renderer.domElement);
}
function loadModel() {
return new Promise((res, rej) => {
new THREE.JSONLoader().load(horse, geometry => {
const material = new ShieldMaterial({
color: new THREE.Color(0x000000),
offset: 10,
morphTargets: true
});
zebra = new THREE.Mesh(geometry, material);
zebra.rotation.y = -Math.PI / 2;
scene.add(zebra);
let landscapeGeometry = new THREE.PlaneGeometry(128, 128, 128, 128);
const landscapeMaterial = new LandscapeMaterial({
color: new THREE.Color(0xffffff)
});
landscape = new THREE.Mesh(landscapeGeometry, landscapeMaterial);
landscape.rotation.x = -Math.PI / 2;
landscape.scale.set(15.0, 15.0, 15.0);
scene.add(landscape);
mixer = new THREE.AnimationMixer(zebra);
var clip = THREE.AnimationClip.CreateFromMorphTargetSequence('gallop', geometry.morphTargets, 30);
mixer.clipAction(clip).play();
res();
});
});
}
function loop(timestamp) {
requestAnimationFrame(loop);
if (mixer) {
let time = Date.now();
mixer.update((time - prevTime) * 0.0005);
prevTime = time;
}
controls.update();
camera.lookAt(camera.target);
renderer.render(scene, camera);
}
function onResize() {
renderer.setSize(window.innerWidth, window.innerHeight);
camera.aspect = window.innerWidth / window.innerHeight;
camera.updateProjectionMatrix();
}
window.addEventListener('click', function () {
zebra.material.uniforms.color.value = new THREE.Color(Math.random() * 0xffffff);
// console.log(landscape.material.wireframe);
if(landscape.material.wireframe == false) {
landscape.material.wireframe = true;
} else {
landscape.material.wireframe = false;
}
});
init();
Also see: Tab Triggers