Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URLs added here will be added as <link>s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Auto Save

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                
              
            
!

CSS

              
                body {
  margin: 0;
  height: 100vh;
  overflow: hidden;
  display: flex;
  align-items: center;
  justify-content: center;
  background: #222;
}

              
            
!

JS

              
                import * as THREE from "https://threejs.org/build/three.module.js";
import { OrbitControls } from "https://threejs.org/examples/jsm/controls/OrbitControls.js";

let camera, scene, renderer;
let mainPropeller, bladeSetA, bladeSetB, bladeSetC;
let step = 0;
const { PI, random, sin, cos } = Math;
const TAU = 2 * PI;
const uniforms = {
  time: { value: 0 }
};

const map = (value, sMin, sMax, dMin, dMax) => {
  return dMin + ((value - sMin) / (sMax - sMin)) * (dMax - dMin);
};
const range = (n, m = 0) =>
  Array(n)
    .fill(m)
    .map((i, j) => i + j);
const vec = (x = 0, y = 0, z = 0) => new THREE.Vector3(x, y, z);
const polar = (ang, r = 1) => [r * cos(ang), r * sin(ang)];
const bladeGeometry = getBladeGeometry();

function init() {
  scene = new THREE.Scene();

  renderer = new THREE.WebGLRenderer({ antialias: true });
  renderer.setPixelRatio(window.devicePixelRatio);
  renderer.setSize(window.innerWidth, window.innerHeight);
  document.body.appendChild(renderer.domElement);

  camera = new THREE.PerspectiveCamera(
    60,
    window.innerWidth / window.innerHeight,
    1,
    1000
  );
  camera.position.set(-44.93624743716165, 27.39247486400745, 85.03167637469498);
  camera.rotation.x = -0.31164690514668836;
  camera.rotation.y = -0.46605157569574196;
  camera.rotation.z = -0.1437609504660436;

  const controls = new OrbitControls(camera, renderer.domElement);

  addAmbientLight(scene);
  addDirectionalLight(scene);
  addResizeHandler(renderer, camera);
  addObjects(scene);
  render();
}

function render() {
  update();

  renderer.render(scene, camera);
  requestAnimationFrame(render);
}

function addObjects(scene) {
  createAxis(scene);

  mainPropeller = createMainPropeller(scene);

  bladeSetB = createBladeSetStageB(scene);
  bladeSetC = createBladeSetStageC(scene);
  bladeSetA = createBladeSetStageA(scene);
  createAirParticles(scene, uniforms);
  createGasParticles(scene, uniforms);
}

function update() {
  mainPropeller.rotation.x += 0.02;
  bladeSetA.rotation.x += 0.01;
  bladeSetB.rotation.x -= 0.01;
  bladeSetC.rotation.x += 0.01;

  step = (step + 1) % 500;

  uniforms.time.value = step / 500;
}
init();

function createAxis(scene) {
  function getPath() {
    const c1 = curve(
      [3.94, 8.851],
      [3.98, 12.526],
      [2.123, 14.144],
      [2.063, 17.139]
    );
    const c2 = line([2.063, 17.139], [1.76, 38.948]);
    const c3 = curve(
      [1.76, 38.948],
      [2.349, 40.783],
      [3.988, 42.028],
      [4.119, 43.994]
    );
    const c4 = line([4.119, 43.994], [4.119, 47.009]);
    const c5 = curve(
      [4.119, 47.009],
      [3.988, 51.596],
      [-0.01, 55.266],
      [0.056, 55.266]
    );

    const path = new THREE.CurvePath();
    path.add(c1);
    path.add(c2);
    path.add(c3);
    path.add(c4);
    path.add(c5);
    return path.getSpacedPoints(100);
  }
  const geometry = new THREE.LatheGeometry(getPath(), 32);
  const material = mat("#1a508b");
  const lathe = new THREE.Mesh(geometry, material);
  lathe.rotation.z = PI / 2;

  lathe.position.x = 30;
  scene.add(lathe);
}

function addResizeHandler(renderer, camera) {
  window.addEventListener(
    "resize",
    () => {
      const { innerWidth: w, innerHeight: h } = window;
      renderer.setSize(w, h);
      camera.aspect = w / h;
      camera.updateProjectionMatrix();
    },
    false
  );
}

function addDirectionalLight(scene) {
  const color = 0xffffff;
  const intensity = 0.6;
  const light = new THREE.DirectionalLight(color, intensity);
  light.position.set(-1, 2, 4);
  scene.add(light);
}

function addAmbientLight(scene) {
  const color = 0xffffff;
  const intensity = 0.6;
  const light = new THREE.AmbientLight(color, intensity);
  scene.add(light);
}

function createGasParticles(scene, uniforms) {
  const particles = 10000;

  function getPathTexture() {
    const points = 1000;
    const c1 = curve(
      [0.222, -0.013],
      [0.47, 0.365],
      [0.866, 1.179],
      [0.979, 2.012]
    );
    const c2 = curve(
      [0.979, 2.012],
      [1.415, 4.167],
      [1.487, 6.031],
      [1.366, 7.944]
    );
    const path = new THREE.CurvePath();
    path.add(c1);
    path.add(c2);

    const data = path
      .getSpacedPoints(points)
      .reduce((acc, { x, y, z }) => [...acc, x, y, z], []);

    return new THREE.DataTexture(
      new Float32Array(data),
      points + 1,
      1,
      THREE.RGBFormat,
      THREE.FloatType
    );
  }

  const fragmentShader = `
varying float alpha;
varying vec3 vColor;
float map(float value, float sMin, float sMax, float dMin, float dMax){
    return dMin + ((value - sMin) / (sMax - sMin)) * (dMax - dMin);
}
vec3 hsb2rgb( in vec3 c ){
    vec3 rgb = clamp(abs(mod(c.x*6.0+vec3(0.0,4.0,2.0),
                             6.0)-3.0)-1.0,
                     0.0,
                     1.0 );
    rgb = rgb*rgb*(3.0-2.0*rgb);
    return c.z * mix( vec3(1.0), rgb, c.y);
}

void main() {
    vec3 c = hsb2rgb(vec3(map(alpha, 0.0, 1.0, 0.0, 0.25), 0.9, 0.9)) ;
    gl_FragColor = vec4( c, 1.0-alpha );
}

`;

  const vertexShader = `
uniform sampler2D tex;
attribute vec3 config;
uniform float time;
varying vec3 vColor;
varying float alpha;
const float TAU = 6.2831853071;
  float map(float value, float sMin, float sMax, float dMin, float dMax){
      return dMin + ((value - sMin) / (sMax - sMin)) * (dMax - dMin);
  }

  vec2 polar(float ang, float r){
      return vec2(r*cos(ang), r*sin(ang));
  }
void main() {

    float radius = config.x;
    float ang = config.y;
    float offset = config.z;


    alpha = mod(offset+time*3., 1.);

    float pointRadius = texture2D(tex, vec2(mod(offset+time*3., 1.), 0.1)).r;


    vec3 p = vec3(0., 0., 0.);

    p.x = map(mod(offset+time*3., 1.), 0., 1., 14., 50.);
    
    vec2 newP = polar(map(mod(ang, 1.), 0., 1., 0., TAU), map(radius, 0., 1., 0., pointRadius*6.));

    p.y = newP.x;
    p.z = newP.y;



    vColor = color;

    vec4 mvPosition = modelViewMatrix * vec4( p, 1.0 );

    gl_PointSize = 0.4 * ( 300.0 / -mvPosition.z );

    gl_Position = projectionMatrix * mvPosition;

}
`;
  const shaderMaterial = new THREE.ShaderMaterial({
    vertexShader,
    fragmentShader,
    uniforms: { ...uniforms, tex: { value: getPathTexture() } },

    blending: THREE.AdditiveBlending,
    depthTest: false,
    transparent: true,
    vertexColors: true
  });

  const geometry = new THREE.BufferGeometry();

  const positions = [];
  const colors = [];
  const config = [];

  const color = new THREE.Color("#ffe227");

  for (let i = 0; i < particles; i++) {
    const r = random();
    const ang = random();
    const offset = random();

    positions.push(0, 0, 0);

    config.push(r, ang, offset);

    colors.push(color.r, color.g, color.b);
  }

  geometry.setAttribute(
    "position",
    new THREE.Float32BufferAttribute(positions, 3)
  );
  geometry.setAttribute("color", new THREE.Float32BufferAttribute(colors, 3));
  geometry.setAttribute("config", new THREE.Float32BufferAttribute(config, 3));

  const particleSystem = new THREE.Points(geometry, shaderMaterial);

  scene.add(particleSystem);
}

function createAirParticles(scene, uniforms) {
  const particles = 20000;
  const fragmentShader = `
  varying vec3 vColor;
  varying float offsetAct;
  
  float map(float value, float sMin, float sMax, float dMin, float dMax){
      return dMin + ((value - sMin) / (sMax - sMin)) * (dMax - dMin);
  }
  void main() {
      float alpha = step(offsetAct, 0.2)*map(offsetAct, 0.0, 0.2, 0.0, 1.) + step(0.2, offsetAct)*step(offsetAct, 0.8) + step(0.8, offsetAct)*map(offsetAct, 0.8, 1.0, 1.0, 0.0) ;
      gl_FragColor = vec4( vColor, alpha );
  }
  `;
  const vertexShader = `
  uniform sampler2D tex;
  attribute vec3 config;
  uniform float time;
  varying vec3 vColor;
  varying float offsetAct;
  const float TAU = 6.2831853071;
  float map(float value, float sMin, float sMax, float dMin, float dMax){
      return dMin + ((value - sMin) / (sMax - sMin)) * (dMax - dMin);
  }

  vec2 polar(float ang, float r){
      return vec2(r*cos(ang), r*sin(ang));
  }
  void main() {
      float radius = config.x;
      float ang = config.y;
      float offset = config.z;
      offsetAct = mod(offset+time, 1.);

      float pointRadius = texture2D(tex, vec2(offsetAct, 0.1)).r;
      vec3 p = vec3(0., 0., 0.);

      p.x = map(offsetAct, 0., 1., -40., 45.);
      vec2 newP = polar(map(mod(ang+time, 1.), 0., 1., 0., TAU), map(radius, 0., 1., 0., pointRadius*6.));

      p.y = newP.x;
      p.z = newP.y;

      vColor = color;

      vec4 mvPosition = modelViewMatrix * vec4( p, 1.0 );

      gl_PointSize = 0.5 * ( 300.0 / -mvPosition.z );

      gl_Position = projectionMatrix * mvPosition;

}`;

  function getPathTexture() {
    const points = 1000;
    const c1 = curve(
      [6.015, 0.026],
      [2.976, 1.431],
      [2.529, 1.903],
      [1.99, 4.005]
    );
    const c2 = line([1.99, 4.005], [2.001, 10.938]);
    const c3 = curve(
      [2.001, 10.938],
      [2.106, 12.589],
      [3.144, 12.875],
      [3.001, 13.997]
    );
    const path = new THREE.CurvePath();
    path.add(c1);
    path.add(c2);
    path.add(c3);

    const data = path
      .getSpacedPoints(points)
      .reduce((acc, { x, y, z }) => [...acc, x, y, z], []);

    return new THREE.DataTexture(
      new Float32Array(data),
      points + 1,
      1,
      THREE.RGBFormat,
      THREE.FloatType
    );
  }

  const shaderMaterial = new THREE.ShaderMaterial({
    vertexShader,
    fragmentShader,
    uniforms: { ...uniforms, tex: { value: getPathTexture() } },

    blending: THREE.AdditiveBlending,
    depthTest: false,
    transparent: true,
    vertexColors: true
  });

  const geometry = new THREE.BufferGeometry();

  const positions = [];
  const colors = [];
  const config = [];

  const color = new THREE.Color("#48426d");

  for (let i = 0; i < particles; i++) {
    const r = random();
    const ang = random();
    const offset = random();

    positions.push(0, 0, 0);

    config.push(r, ang, offset);

    colors.push(color.r, color.g, color.b);
  }

  geometry.setAttribute(
    "position",
    new THREE.Float32BufferAttribute(positions, 3)
  );
  geometry.setAttribute("color", new THREE.Float32BufferAttribute(colors, 3));
  geometry.setAttribute("config", new THREE.Float32BufferAttribute(config, 3));

  const particleSystem = new THREE.Points(geometry, shaderMaterial);

  scene.add(particleSystem);
}

function createMainPropeller(scene) {
  const matrix = new THREE.Object3D();
  const totalPerCirc = 30;
  const material = mat("#1a508b");
  const spheres = new THREE.InstancedMesh(
    bladeGeometry,
    material,
    totalPerCirc
  );

  range(totalPerCirc).forEach((i) => {
    const ang = map(i, 0, totalPerCirc, 0, TAU);
    const [z, y] = polar(ang, 4);
    const x = -17;

    matrix.position.set(x, y, z);
    matrix.scale.set(1.8, 1.8, 0.8);
    matrix.lookAt(vec(x, 0, 0));
    matrix.updateMatrix();
    spheres.setMatrixAt(i, matrix.matrix);
  });

  scene.add(spheres);
  return spheres;
}

function createBladeSetStageB(scene) {
  const matrix = new THREE.Object3D();
  const totalPerCirc = 40;
  const rows = 10;
  const material = mat("#1a508b");
  const spheres = new THREE.InstancedMesh(
    bladeGeometry,
    material,
    totalPerCirc * rows
  );

  range(rows).forEach((rowId) => {
    range(totalPerCirc).forEach((i) => {
      const ang = map(i, 0, totalPerCirc, 0, TAU);
      const [z, y] = polar(ang, 2);
      const x = map(rowId, 0, rows, -4, 10);

      matrix.position.set(x, y, z);
      matrix.scale.set(0.3, 0.3, 0.2);
      matrix.lookAt(vec(x, 0, 0));
      matrix.updateMatrix();
      spheres.setMatrixAt(rowId * totalPerCirc + i, matrix.matrix);
    });
  });

  scene.add(spheres);
  return spheres;
}

function createBladeSetStageC(scene) {
  const matrix = new THREE.Object3D();
  const totalPerCirc = 40;
  const rows = 7;
  const material = mat("#1a508b");
  const spheres = new THREE.InstancedMesh(
    bladeGeometry,
    material,
    totalPerCirc * rows
  );

  range(rows).forEach((rowId) => {
    range(totalPerCirc).forEach((i) => {
      const ang = map(i, 0, totalPerCirc, 0, TAU);
      const [z, y] = polar(ang, map(rowId, 0, rows, 2.1, 4.8));
      const x = map(rowId, 0, rows, 14, 22);

      matrix.position.set(x, y, z);
      matrix.scale.set(0.3, 0.3, 0.2);
      matrix.lookAt(vec(x, 0, 0));
      matrix.updateMatrix();
      spheres.setMatrixAt(rowId * totalPerCirc + i, matrix.matrix);
    });
  });

  scene.add(spheres);
  return spheres;
}

function createBladeSetStageA(scene) {
  const matrix = new THREE.Object3D();
  const totalPerCirc = 40;
  const rows = 4;
  const material = mat("#1a508b");
  const spheres = new THREE.InstancedMesh(
    bladeGeometry,
    material,
    totalPerCirc * rows
  );

  range(rows).forEach((rowId) => {
    range(totalPerCirc).forEach((i) => {
      const ang = map(i, 0, totalPerCirc, 0, TAU);
      const [z, y] = polar(ang, map(rowId, 0, rows, 2, 4));
      const x = map(rowId, 0, rows, -10, -15);

      matrix.position.set(x, y, z);
      matrix.scale.set(0.3, 0.3, 0.2);
      matrix.lookAt(vec(x, 0, 0));
      matrix.updateMatrix();
      spheres.setMatrixAt(rowId * totalPerCirc + i, matrix.matrix);
    });
  });

  scene.add(spheres);
  return spheres;
}

function getBladeGeometry() {
  const angRot = (PI / 2) * 0.75;
  function func(v, u, target) {
    const z = map(v, 0, 1, 0, -15);
    const ang = map(v, 0, 1, 0, angRot);
    const [x1, y1] = polar(ang, 1);
    const [x2, y2] = polar(ang + PI, 1);
    const x = map(u, 0, 1, x2, x1);
    const y = map(u, 0, 1, y2, y1);
    target.set(x, y, z);
  }
  return new THREE.ParametricBufferGeometry(func, 5, 1);
}

function mat(color, wireframe = false) {
  const c = color ? color : randomColor();
  return new THREE.MeshPhongMaterial({
    color: new THREE.Color(c),
    side: THREE.DoubleSide,
    wireframe
  });
}

function line(v1, v2) {
  const [x1, y1] = v1;
  const [x2, y2] = v2;
  return new THREE.LineCurve3(vec(x1, y1), vec(x2, y2));
}

function curve(v1, v2, v3, v4) {
  const [x1, y1] = v1;
  const [x2, y2] = v2;
  const [x3, y3] = v3;
  const [x4, y4] = v4;

  return new THREE.CubicBezierCurve3(
    vec(x1, y1),
    vec(x2, y2),
    vec(x3, y3),
    vec(x4, y4)
  );
}

              
            
!
999px

Console