Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URLs added here will be added as <link>s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Auto Save

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                <!-- 
https://js.tensorflow.org/tutorials/webcam-transfer-learning.html
-->

<div id="no-webcam">
  No webcam found.
  <br> To use this demo, use a device with a webcam.
</div>

<button class="train">Train Model</button>
<button class="predict">Predict</button>

<div class="joystick-container">
  <div class="joystick">

    <div class="webcam-box">
      <video autoplay playsinline muted id="webcam" width="224" height="224"></video>
    </div>

    <button class="up">Up</button>
    <button class="left">Left</button>
    <button class="down">Down</button>
    <button class="right">Right</button>
  </div>
</div>

<div class="predicted">🖐</div>

              
            
!

CSS

              
                #no-webcam {
  display: none;
  text-align: center;
  font-size: 30px;
  padding: 30px;
  line-height: 30px;
}

#webcam {
  height: 60px;
  transform: scaleX(-1);
}

.joystick-container {
  display: flex;
  justify-content: center;
}

.joystick {
  display: inline-grid;
  grid-template-columns: repeat(3, 60px);
  grid-template-rows: repeat(3, 60px);
}

.webcam-box {
  grid-row: 2 / 3;
  grid-column: 2 / 3;
  display: flex;
  justify-content: center;
  box-sizing: border-box;
  border: 1px solid #585858;
  width: 60px;
  overflow: hidden;
}

.joystick .up {
  grid-row: 1 / 2;
  grid-column: 2 / 3;
}

.joystick .left {
  grid-row: 2 / 3;
  grid-column: 1 / 2;
}

.joystick .down {
  grid-row: 3 / 4;
  grid-column: 2 / 3;
}

.joystick .right {
  grid-row: 2 / 3;
  grid-column: 3 / 4;
}

.predicted {
  font-size: 5rem;
  text-align: center;
}

              
            
!

JS

              
                console.clear();

const { of, fromEvent, merge, Scheduler, interval } = rxjs;
const { flatMap, takeUntil, map, switchMap } = rxjs.operators;

const NUM_CLASSES = 4;
const MODEL_URL = 'https://storage.googleapis.com/tfjs-models/tfjs/mobilenet_v1_0.25_224/model.json';

const loadMobilenet = async function (url) {
  const mobilenet = await tf.loadModel(url);
  const layer = mobilenet.getLayer('conv_pw_13_relu');
  return tf.model({
    inputs: mobilenet.input,
    outputs: layer.output
  })
};

const cropImage = (image) => {
  const [height, width] = image.shape;
  const size = Math.min(width, height);
  const start = [(height - size) / 2, (width - size) / 2, 0];
  const end = [size, size, 3];
  return image.slice(start, end);
}

const capture = (webcam) => tf.tidy(() => {
  const webcamImage = tf.fromPixels(webcam);
  const cropped = cropImage(webcamImage);
  const expanded = cropped.expandDims();
  // normalize
  return expanded.toFloat().div(tf.scalar(127)).sub(tf.scalar(1));
});


let mobilenet;
let webcamera;
let model;
const examples = {
  xs: null,
  ys: null
};

const learningRate = 0.0001;
const batchSizeFraction = 0.4;
const epochs = 20;
const hiddenUnits = 100;

const addExample = (example, label) => {
  const y = tf.tidy(() => {
    return tf.oneHot(tf.tensor1d([label]).toInt(), NUM_CLASSES);
  });

  if (examples.xs === null) {
    examples.xs = tf.keep(example);
    examples.ys = tf.keep(y);
  } else {
    const oldX = examples.xs;
    const oldY = examples.ys;

    examples.xs = tf.keep(oldX.concat(example));
    examples.ys = tf.keep(oldY.concat(y));

    oldX.dispose();
    oldY.dispose();
    y.dispose();
  }
};

const train = () => {

  if (examples.xs === null) {
    throw new Error('Add some examples before training!');
  }

  model = tf.sequential({
    layers: [
      tf.layers.flatten({ inputShape: [7, 7, 256] }),

      tf.layers.dense({
        units: hiddenUnits,
        activation: 'relu',
        kernelInitializer: 'varianceScaling',
        useBias: true
      }),

      tf.layers.dense({
        units: NUM_CLASSES,
        kernelInitializer: 'varianceScaling',
        useBias: false,
        activation: 'softmax'
      })
    ]
  });

  const optimizer = tf.train.adam(learningRate);

  model.compile({ optimizer, loss: 'categoricalCrossentropy' });

  const batchSize = Math.floor(examples.xs.shape[0] * batchSizeFraction);
  if (batchSize <= 0) {
    throw new Error('Batch size is 0 or NaN.');
  }

  model.fit(examples.xs, examples.ys, {
    batchSize,
    epochs,
    callbacks: {
      onBatchEnd: async (batch, logs) => {
        console.log(`Loss: ${logs.loss.toFixed(5)}`);
        await tf.nextFrame();
      }
    }
  });
};

const predict = async () => {
  const predicted = tf.tidy(() => {
    const img = capture(webcamera);
    const activation = mobilenet.predict(img);
    const predictions = model.predict(activation);
    return predictions.as1D().argMax();
  });

  const classid = (await predicted.data())[0];

  predicted.dispose();

  await tf.nextFrame();
  
  return classid;
};

const setupWebcamera = async (webcam) => {
  webcam.addEventListener('loadeddata', async () => {
    const { videoWidth, videoHeight } = webcam;
    const aspectRatio = videoWidth / videoHeight;

    if (videoWidth < videoHeight) {
      webcam.height = webcam.width / aspectRatio;
    } else {
      webcam.width = aspectRatio * webcam.height;
    }
  });

  try {
    const stream = await navigator.mediaDevices.getUserMedia({ video: true, audio: false });
    webcam.srcObject = stream;

  } catch (err) {
    console.error(err);
  }
};

const pressing = el => fromEvent(el, 'mousedown')
  .pipe(
    switchMap(_ =>
      interval(0, Scheduler.animationFrame).pipe(
        takeUntil(fromEvent(el, 'mouseup'))
      )
    )
  );

const setupUI = () => {
  const dirs = {
    up: { label: 0, text: '☝️' },
    left: { label: 1, text: '👈' },
    down: { label: 2, text: '👇' },
    right: { label: 3, text: '👉' },
  };
  
  const joyUp = document.querySelector('.joystick .up');
  const joyLeft = document.querySelector('.joystick .left');
  const joyDown = document.querySelector('.joystick .down');
  const joyRight = document.querySelector('.joystick .right');

  const startTrain = document.querySelector('.train');
  const startPredict = document.querySelector('.predict');

  const predicted = document.querySelector('.predicted');
  
  const upClick = pressing(joyUp)
    .pipe(map(_ => dirs.up.label));
  const leftClick = pressing(joyLeft)
    .pipe(map(_ => dirs.left.label));
  const downClick = pressing(joyDown)
    .pipe(map(_ => dirs.down.label));
  const rightClick = pressing(joyRight)
    .pipe(map(_ => dirs.right.label));

  merge(upClick, leftClick, rightClick, downClick)
    .subscribe(label => {
      if (webcamera) {
        const img = capture(webcamera);
        const example = mobilenet.predict(img);
        addExample(example, label);
      }
    });

  fromEvent(startTrain, 'click').subscribe(async () => {
    await tf.nextFrame();
    train(examples);
  });

  fromEvent(startPredict, 'click').pipe(
    switchMap(_ =>
      interval(0, Scheduler.animationFrame)
    )
  )
  .subscribe(async () => {
    const label = await predict();
    const key = Object.keys(dirs).find(k => dirs[k].label === label);
    predicted.textContent = `${dirs[key].text}`;
  });
};

(async function () {
  setupUI();

  mobilenet = await loadMobilenet(MODEL_URL);

  webcamera = document.querySelector('#webcam');

  await setupWebcamera(webcamera);
})();

              
            
!
999px

Console