HTML preprocessors can make writing HTML more powerful or convenient. For instance, Markdown is designed to be easier to write and read for text documents and you could write a loop in Pug.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. So you don't have access to higher-up elements like the <html>
tag. If you want to add classes there that can affect the whole document, this is the place to do it.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. If you need things in the <head>
of the document, put that code here.
The resource you are linking to is using the 'http' protocol, which may not work when the browser is using https.
CSS preprocessors help make authoring CSS easier. All of them offer things like variables and mixins to provide convenient abstractions.
It's a common practice to apply CSS to a page that styles elements such that they are consistent across all browsers. We offer two of the most popular choices: normalize.css and a reset. Or, choose Neither and nothing will be applied.
To get the best cross-browser support, it is a common practice to apply vendor prefixes to CSS properties and values that require them to work. For instance -webkit-
or -moz-
.
We offer two popular choices: Autoprefixer (which processes your CSS server-side) and -prefix-free (which applies prefixes via a script, client-side).
Any URLs added here will be added as <link>
s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.
You can apply CSS to your Pen from any stylesheet on the web. Just put a URL to it here and we'll apply it, in the order you have them, before the CSS in the Pen itself.
You can also link to another Pen here (use the .css
URL Extension) and we'll pull the CSS from that Pen and include it. If it's using a matching preprocessor, use the appropriate URL Extension and we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
JavaScript preprocessors can help make authoring JavaScript easier and more convenient.
Babel includes JSX processing.
Any URL's added here will be added as <script>
s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.
You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.
If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
Search for and use JavaScript packages from npm here. By selecting a package, an import
statement will be added to the top of the JavaScript editor for this package.
Using packages here is powered by esm.sh, which makes packages from npm not only available on a CDN, but prepares them for native JavaScript ESM usage.
All packages are different, so refer to their docs for how they work.
If you're using React / ReactDOM, make sure to turn on Babel for the JSX processing.
If active, Pens will autosave every 30 seconds after being saved once.
If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.
If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.
Visit your global Editor Settings.
<div id="canvaswrapper">
<em>Click on the canvas to stop/restart the animation</em>
<canvas id="democanvas" width="960" height="600">
HTML5 Canvas is not supported by your browser.
</canvas>
</div>
<script type="text/javascript">
window.onload = () => {
const canvas = document.getElementById('democanvas'),
canvasBounds = {'left': 0, 'right': canvas.width,
'top': 0, 'bottom': canvas.height};
const ctx = canvas.getContext('2d');
const numberOfBalls = 150,
ballRadius = 15,
minVelocity = 3,
maxVelocity = 5,
colors = ['#FF0000', '#00FF00', '#0000FF',
'#FFFF00', '#FF00FF', '#00FFFF'];
// Create the "World" and populate it with Balls
let world = new World(new Bounds(canvasBounds));
for(let i=0; i < numberOfBalls; i++) {
world.addObject(new Ball(ballRadius, colors[i % colors.length])
.setRandomPosition(canvasBounds)
.setRandomVelocity(minVelocity, maxVelocity));
}
let useWorker = false,
worker = undefined;
if ( useWorker ) {
let workerThreadUrl = 'collider-worker.js'; // 'KopOrq.js';
worker = new Worker(workerThreadUrl);
// Wait for message back from worker thread with updated World object
worker.addEventListener("message", (evt) => {
if ( evt.data.message === "draw") {
world = World.restoreFromData(evt.data.world);
world.draw(ctx);
if (runAnimation) {
requestAnimationFrame(animationStep);
}
}
});
}
// The animation loop
let runAnimation = true;
function animationStep() {
if (useWorker) {
worker.postMessage(world); //do world.move() in worker
} else {
world.move();
world.draw(ctx);
if (runAnimation) {
requestAnimationFrame(animationStep);
}
}
}
animationStep();
// Click/tap in canvas to stop/restart animation
canvas.addEventListener("click", (evt) => {
runAnimation = ! runAnimation;
if (runAnimation) {
animationStep();
}
});
};
</script>
body {
background-color: #afd9ee;
}
#canvaswrapper {
margin-left: auto;
margin-right: auto;
margin-top: 40px;
width: 960px;
height: 600px;
}
#democanvas {
border: 2px solid #555;
background-color: #3a87ad;
}
@media screen and (max-width: 800px) {
#canvaswrapper {
margin-left: auto;
margin-right: auto;
width: 600px;
height: 600px;
}
}
@media screen and (max-width: 400px) {
#canvaswrapper {
margin-left: 10px;
margin-top: 20px;
width: 300px;
height: 300px;
}
}
'use strict';
/*jshint esversion: 6 */
/* global exports */
/* global console */
/**
* Collider: simple demo of collision physics.
* Bruce Wilson, 1/29/2018
*/
class World {
constructor(bounds) {
this.bounds = bounds;
this.animationStep = 0;
this.displayList = [];
this.moveDuration = 0;
this.drawDuration = 0;
this.options = {};
// Clear before drawing: if not, an interesting canvas-filling
// graphic is created
this.options.clearBeforeDraw = true;
}
static restoreFromData(data) {
// Restore from data that has been serialized to a worker thread
const bounds = Bounds.restoreFromData(data.bounds),
world = new World(bounds);
world.animationStep = data.animationStep;
world.displayList = [];
world.moveDuration = data.moveDuration;
world.options = data.options;
data.displayList.forEach((obj) => {
const ball = Ball.restoreFromData(obj);
world.displayList.push(ball);
});
return world;
}
addObject(obj) { // fluent
this.displayList.push(obj);
obj.id = this.displayList.length;
return this; // fluent
}
draw(ctx) { // fluent, graphics
const tstart = new Date().getTime(),
drawingAreaBounds = this.bounds.getBounds();
if (this.options.clearBeforeDraw) {
ctx.clearRect(drawingAreaBounds.left, drawingAreaBounds.top,
drawingAreaBounds.right, drawingAreaBounds.bottom);
}
this.displayList.forEach((obj) => {
obj.draw(ctx);
});
const duration = (new Date().getTime() - tstart);
if (duration > 0) {
this.drawDuration = duration;
}
this.drawDurationText(ctx);
return this; // fluent
}
drawDurationText(ctx) { // debugging
const x = 10, y = 20;
ctx.font = '16px sans-serif';
ctx.fillStyle = '#e0e0e0';
ctx.fillText("Move: " + this.moveDuration + " msec, Draw: " +
this.drawDuration + " msec", x, y);
}
move() { // fluent
this.animationStep += 1;
const tstart = new Date().getTime();
this.checkForCollisions();
const duration = (new Date().getTime() - tstart);
if ( duration > 1) {
// 60 fps => 16.7 msec per frame
// console.log('%d Check for collisions: %d msec', this.animationStep, duration);
this.moveDuration = duration;
}
let self = this;
this.displayList.forEach((obj) => {
self.bounds.checkInBounds(obj);
});
this.displayList.forEach((obj) => {
obj.move();
});
return this; // fluent
}
checkForCollisions() {
const listLength = this.displayList.length;
for (let i=0; i < listLength; i++) {
const obj1 = this.displayList[i];
for (let j=i + 1; j < listLength; j++) {
const obj2 = this.displayList[j],
minDist = obj1.getRadius() + obj2.getRadius(),
dist = obj1.distanceTo(obj2);
// Check distance > 0 for degenerate case where balls overshoot
if ( dist > 0 && dist < minDist ) {
// console.log("Collision: i=%d, j=%d, dist=%.3f, minDist=%.3f", i, j, dist, minDist);
// This reverses the direction of movement of each object
const newVelocity1 = obj1.bounceOff(obj2),
newVelocity2 = Vector.negate(newVelocity1);
// console.log("vel1: " + JSON.stringify(newVelocity1)); // debugging
// console.log("vel2: " + JSON.stringify(newVelocity2));
this.separateOverlappedBalls(obj1, obj2);
obj1.setVelocity(newVelocity1);
obj2.setVelocity(newVelocity2);
}
}
}
}
// TODO: try an alternate "separate" method that checks dot products
separateOverlappedBalls(ball1, ball2) {
const vdiff = Vector.subtract(ball2.getPosition(), ball1.getPosition()),
radiusSum = ball1.getRadius() + ball2.getRadius(),
dist = ball1.distanceTo(ball2),
pos1 = ball1.getPosition(),
pos2 = ball2.getPosition();
// Adjust each ball's position by half the difference
// of the sum of the radii and the distance
const adjustDist = radiusSum - dist,
adjust = Vector.divide(Vector.setMagnitude(vdiff, adjustDist), 2.0);
ball1.setPosition({x: pos1.x + adjust.x, y: pos1.y + adjust.y});
ball2.setPosition({x: pos2.x - adjust.x, y: pos2.y - adjust.y});
}
ballsOverlap(ball1, ball2, dist) {
return dist < ball1.getRadius() + ball2.getRadius();
// return dist < Math.min(obj1.getRadius(), obj2.getRadius());
}
}
class Bounds {
constructor(bounds) {
this.bounds = { top: bounds.top, right: bounds.right,
bottom: bounds.bottom, left: bounds.left };
}
static restoreFromData(data) {
return new Bounds(data.bounds);
}
getBounds() { return this.bounds; }
checkInBounds(obj) {
const objBounds = obj.getBounds();
// Bounce if crossing a boundary
if ( objBounds.left < this.bounds.left ) {
obj.velocity.x = - obj.velocity.x;
// Make sure ball is within bounds: counteract overshoot
obj.position.x = this.bounds.left + obj.radius;
}
if ( objBounds.right > this.bounds.right ) {
obj.velocity.x = - obj.velocity.x;
obj.position.x = this.bounds.right - obj.radius;
}
if ( objBounds.top < this.bounds.top ) {
obj.velocity.y = - obj.velocity.y;
obj.position.y = this.bounds.top + obj.radius;
}
if ( objBounds.bottom > this.bounds.bottom ) {
obj.velocity.y = - obj.velocity.y;
obj.position.y = this.bounds.bottom - obj.radius;
}
}
}
class CircularBounds {
constructor(bounds) {
this.bounds = { top: bounds.top, right: bounds.right,
bottom: bounds.bottom, left: bounds.left };
const width = bounds.right - bounds.left,
height = bounds.bottom - bounds.top;
this.center = {x: width / 2.0, y: height / 2.0};
this.radius = Math.min(width / 2.0, height / 2.0);
}
static restoreFromData(data) {
const bounds = new Bounds(data.bounds);
bounds.radius = data.bounds.radius;
return bounds;
}
getBounds() { return this.bounds; }
checkInBounds(obj) {
const objBounds = obj.getBounds();
const vDistToCenter = Vector.subtract(obj.getPosition(), this.center),
distToCenter = Vector.magnitude(vDistToCenter);
if ( distToCenter + obj.getRadius() > this.radius) {
// bounce off boundary
}
}
}
class Ball {
constructor(radius, color, position={x: 0, y: 0}, velocity={x: 0, y: 0}) {
this.id = 0;
this.radius = radius;
this.color = color;
this.position = position;
this.velocity = velocity;
}
static restoreFromData(data) {
// Restore from data that's been serialized to a worker thread
const ball = new Ball(data.radius, data.color);
ball.position = data.position;
ball.velocity = data.velocity;
return ball;
}
getPosition() { return {x: this.position.x, y: this.position.y}; }
setPosition(p) { this.position = {x: p.x, y: p.y}; return this; } // fluent method
getVelocity() { return {x: this.velocity.x, y: this.velocity.y}; }
setVelocity(v) { this.velocity = {x: v.x, y: v.y}; return this; } // fluent method
getRadius() { return this.radius; }
getBounds() {
return {top:(this.position.y - this.radius), right:(this.position.x + this.radius),
bottom:(this.position.y + this.radius), left:(this.position.x - this.radius)};
}
move() {
// Move according to the current velocity
this.position.x = this.position.x + this.velocity.x;
this.position.y = this.position.y + this.velocity.y;
}
draw(ctx) { // graphics
const FULLCIRCLE = 2 * Math.PI; // TODO
ctx.beginPath();
ctx.arc(this.position.x, this.position.y, this.radius, 0, FULLCIRCLE, true);
ctx.fillStyle = this.color;
ctx.fill();
ctx.strokeStyle = '#202020';
ctx.strokeWeight = 0.25;
ctx.stroke();
// this.drawVelocity(ctx); // debugging
}
drawVelocity(ctx) { // for debugging
const multiplier = 5;
ctx.beginPath();
ctx.moveTo(this.position.x, this.position.y);
ctx.lineTo(this.position.x + multiplier * this.velocity.x,
this.position.y + multiplier * this.velocity.y);
ctx.strokeStyle = '#202020';
ctx.strokeWeight = 2.0;
ctx.stroke();
}
bounceOff(otherBall) {
// There's no consideration of mass or conservation of momentum
// in this simple example - each ball retains its velocity, it
// just moves off in a different direction
// console.log("bounce " + this + " off " + otherBall);
const normalVector =
Vector.unitVector(Vector.subtract(otherBall.getPosition(), this.getPosition())), // TODO
incidentVector = Vector.unitVector(this.getVelocity()),
scalarSpeed = Vector.magnitude(this.getVelocity()),
ndotI = - 2.0 * Vector.dotProduct(normalVector, incidentVector);
let newVelocity = Vector.multiply(normalVector, ndotI);
newVelocity = Vector.subtract(incidentVector, newVelocity);
newVelocity = Vector.setMagnitude(newVelocity, scalarSpeed);
return newVelocity;
}
distanceTo(otherBall) {
const pos1 = this.getPosition(),
pos2 = otherBall.getPosition(),
dx = pos1.x - pos2.x,
dy = pos1.y - pos2.y;
return Math.sqrt(dx * dx + dy * dy);
}
setRandomPosition(bounds) { // fluent method
const x = Math.random() * (bounds.right - bounds.left) + bounds.left,
y = Math.random() * (bounds.bottom - bounds.top) + bounds.top;
this.position = {x: x, y: y};
return this; // fluent method
}
setRandomVelocity(minVelocity = 2, maxVelocity=5) { // fluent method
const velocityRange = Math.abs(maxVelocity - minVelocity);
let direction = (Math.random() > 0.5) ? 1 : -1;
this.velocity.x = direction * (velocityRange * Math.random() + minVelocity);
direction = (Math.random() > 0.5) ? 1 : -1;
this.velocity.y = direction * (velocityRange * Math.random() + minVelocity);
return this; // fluent method
}
toString() {
const id = this.id || 0,
precision = 1,
xpos = (this.position.x).toFixed(precision),
ypos = (this.position.y).toFixed(precision),
vx = (this.velocity.x).toFixed(precision),
vy = (this.velocity.y).toFixed(precision);
return id + ", pos: (" + xpos + ", " + ypos + "), vel: (" + vx + ", " + vy + ")";
}
}
window.Vector = (function(){
"use strict";
return {
// Operates on vectors as object literals like '{x: ..., y: ...}'
dotProduct: function(v1, v2) { return (v1.x * v2.x) + (v1.y * v2.y); },
magnitude: function(v1) { return Math.sqrt((v1.x * v1.x) + (v1.y * v1.y)); },
unitVector: function(v1) {
const magn = Vector.magnitude(v1);
return {x: v1.x / magn, y: v1.y / magn};
},
setMagnitude: function(v1, m) {
// Assuming uv is a unit vector, the x and y components of uv
// are the cosine and sine of the vectors
let magn = Vector.magnitude(v1);
return {x: m * v1.x / magn, y: m * v1.y / magn};
},
subtract: function(v1, v2) {
// Subtract v2 - v1, gives a vector from v2 to v1
return {x: (v2.x - v1.x), y: (v2.y - v1.y)};
},
negate: function(v) { return {x: -v.x, y: -v.y}; },
multiply: function(v1, scalarValue) { return {x: (v1.x * scalarValue), y: (v1.y * scalarValue)}; },
divide: function(v1, scalarValue) { return {x: (v1.x / scalarValue), y: (v1.y / scalarValue)}; },
same: function(v1, v2, tolerance=0.00001) {
return (Math.abs(v1.x - v2.x) < tolerance) && (Math.abs(v1.y - v2.y) < tolerance);
},
asString: function(v) { return "{x: " + v.x + ", y:" + v.y + "}"; }
};
})();
if (typeof exports !== 'undefined') {
exports.World = World;
exports.Bounds = Bounds;
exports.CircularBounds = CircularBounds;
exports.Ball = Ball;
exports.Vector = Vector;
}
Also see: Tab Triggers