Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URLs added here will be added as <link>s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Auto Save

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                <canvas style="--gradient-color-1:#ef008f;--gradient-color-2:#6ec3f4;--gradient-color-3:#7038ff;--gradient-color-4:#e2e2e2;" id="gradient-canvas" data-transition-in></canvas>

<script>
	window.addEventListener('DOMContentLoaded', (e) => {
		var gradient = new Gradient;
		gradient.initGradient("#gradient-canvas");
	});
</script>
              
            
!

CSS

              
                * {
	margin: 0;
	padding: 0;
}

body {
	height: 100vh;
	width: 100%;
	display: grid;
	place-items: stretch;
}

#gradient-canvas {
	height: 100vh;
	width: 100%;
	background: lightgrey;
}
              
            
!

JS

              
                // https://kevinhufnagl.com/wp-content/themes/lightisol/dist/js/min/lightisol-gradient.min.js?ver=1.0
//
// Since the original CodePen https://codepen.io/kevinhufnagl/pen/YzwBemd,
// seems to have been removed by the author I restored this version from
// the article's markup found at
// https://kevinhufnagl.com/how-to-stripe-website-gradient-effect/

function normalizeColor(hexCode) {
	return [
		((hexCode >> 16) & 255) / 255,
		((hexCode >> 8) & 255) / 255,
		(255 & hexCode) / 255
	];
}
["SCREEN", "LINEAR_LIGHT"].reduce(
	(hexCode, t, n) => Object.assign(hexCode, { [t]: n }),
	{}
);
class MiniGl {
	constructor(canvas, width, height, debug = !1) {
		const _miniGl = this,
			debug_output =
				-1 !== document.location.search.toLowerCase().indexOf("debug=webgl");
		(_miniGl.canvas = canvas),
			(_miniGl.gl = _miniGl.canvas.getContext("webgl", { antialias: !0 })),
			(_miniGl.meshes = []);
		const context = _miniGl.gl;
		width && height && this.setSize(width, height),
			_miniGl.lastDebugMsg,
			(_miniGl.debug =
				debug && debug_output
					? function (e) {
							const t = new Date();
							t - _miniGl.lastDebugMsg > 1e3 && console.log("---"),
								console.log(
									t.toLocaleTimeString() +
										Array(Math.max(0, 32 - e.length)).join(" ") +
										e +
										": ",
									...Array.from(arguments).slice(1)
								),
								(_miniGl.lastDebugMsg = t);
					  }
					: () => {}),
			Object.defineProperties(_miniGl, {
				Material: {
					enumerable: !1,
					value: class {
						constructor(vertexShaders, fragments, uniforms = {}) {
							const material = this;
							function getShaderByType(type, source) {
								const shader = context.createShader(type);
								return (
									context.shaderSource(shader, source),
									context.compileShader(shader),
									context.getShaderParameter(shader, context.COMPILE_STATUS) ||
										console.error(context.getShaderInfoLog(shader)),
									_miniGl.debug("Material.compileShaderSource", { source: source }),
									shader
								);
							}
							function getUniformVariableDeclarations(uniforms, type) {
								return Object.entries(uniforms)
									.map(([uniform, value]) => value.getDeclaration(uniform, type))
									.join("\n");
							}
							(this.uniforms = uniforms), (this.uniformInstances = []);
							const prefix = "\n              precision highp float;\n            ";
							(this.vertexSource = `\n              ${prefix}\n              attribute vec4 position;\n              attribute vec2 uv;\n              attribute vec2 uvNorm;\n              ${getUniformVariableDeclarations(
								_miniGl.commonUniforms,
								"vertex"
							)}\n              ${getUniformVariableDeclarations(
								uniforms,
								"vertex"
							)}\n              ${vertexShaders}\n            `),
								(this.Source = `\n              ${prefix}\n              ${getUniformVariableDeclarations(
									_miniGl.commonUniforms,
									"fragment"
								)}\n              ${getUniformVariableDeclarations(
									uniforms,
									"fragment"
								)}\n              ${fragments}\n            `),
								(this.vertexShader = getShaderByType(
									context.VERTEX_SHADER,
									this.vertexSource
								)),
								(this.fragmentShader = getShaderByType(
									context.FRAGMENT_SHADER,
									this.Source
								)),
								(this.program = context.createProgram()),
								context.attachShader(this.program, this.vertexShader),
								context.attachShader(this.program, this.fragmentShader),
								context.linkProgram(this.program),
								context.getProgramParameter(this.program, context.LINK_STATUS) ||
									console.error(context.getProgramInfoLog(this.program)),
								context.useProgram(this.program),
								this.attachUniforms(void 0, _miniGl.commonUniforms),
								this.attachUniforms(void 0, this.uniforms);
						}
						attachUniforms(name, uniforms) {
							const material = this;
							void 0 === name
								? Object.entries(uniforms).forEach(([name, uniform]) => {
										material.attachUniforms(name, uniform);
								  })
								: "array" == uniforms.type
								? uniforms.value.forEach((uniform, i) =>
										material.attachUniforms(`${name}[${i}]`, uniform)
								  )
								: "struct" == uniforms.type
								? Object.entries(uniforms.value).forEach(([uniform, i]) =>
										material.attachUniforms(`${name}.${uniform}`, i)
								  )
								: (_miniGl.debug("Material.attachUniforms", {
										name: name,
										uniform: uniforms
								  }),
								  material.uniformInstances.push({
										uniform: uniforms,
										location: context.getUniformLocation(material.program, name)
								  }));
						}
					}
				},
				Uniform: {
					enumerable: !1,
					value: class {
						constructor(e) {
							(this.type = "float"),
								Object.assign(this, e),
								(this.typeFn =
									{
										float: "1f",
										int: "1i",
										vec2: "2fv",
										vec3: "3fv",
										vec4: "4fv",
										mat4: "Matrix4fv"
									}[this.type] || "1f"),
								this.update();
						}
						update(value) {
							void 0 !== this.value &&
								context[`uniform${this.typeFn}`](
									value,
									0 === this.typeFn.indexOf("Matrix") ? this.transpose : this.value,
									0 === this.typeFn.indexOf("Matrix") ? this.value : null
								);
						}
						getDeclaration(name, type, length) {
							const uniform = this;
							if (uniform.excludeFrom !== type) {
								if ("array" === uniform.type)
									return (
										uniform.value[0].getDeclaration(name, type, uniform.value.length) +
										`\nconst int ${name}_length = ${uniform.value.length};`
									);
								if ("struct" === uniform.type) {
									let name_no_prefix = name.replace("u_", "");
									return (
										(name_no_prefix =
											name_no_prefix.charAt(0).toUpperCase() + name_no_prefix.slice(1)),
										`uniform struct ${name_no_prefix} \n                                {\n` +
											Object.entries(uniform.value)
												.map(([name, uniform]) =>
													uniform.getDeclaration(name, type).replace(/^uniform/, "")
												)
												.join("") +
											`\n} ${name}${length > 0 ? `[${length}]` : ""};`
									);
								}
								return `uniform ${uniform.type} ${name}${
									length > 0 ? `[${length}]` : ""
								};`;
							}
						}
					}
				},
				PlaneGeometry: {
					enumerable: !1,
					value: class {
						constructor(width, height, n, i, orientation) {
							context.createBuffer(),
								(this.attributes = {
									position: new _miniGl.Attribute({
										target: context.ARRAY_BUFFER,
										size: 3
									}),
									uv: new _miniGl.Attribute({ target: context.ARRAY_BUFFER, size: 2 }),
									uvNorm: new _miniGl.Attribute({
										target: context.ARRAY_BUFFER,
										size: 2
									}),
									index: new _miniGl.Attribute({
										target: context.ELEMENT_ARRAY_BUFFER,
										size: 3,
										type: context.UNSIGNED_SHORT
									})
								}),
								this.setTopology(n, i),
								this.setSize(width, height, orientation);
						}
						setTopology(e = 1, t = 1) {
							const n = this;
							(n.xSegCount = e),
								(n.ySegCount = t),
								(n.vertexCount = (n.xSegCount + 1) * (n.ySegCount + 1)),
								(n.quadCount = n.xSegCount * n.ySegCount * 2),
								(n.attributes.uv.values = new Float32Array(2 * n.vertexCount)),
								(n.attributes.uvNorm.values = new Float32Array(2 * n.vertexCount)),
								(n.attributes.index.values = new Uint16Array(3 * n.quadCount));
							for (let e = 0; e <= n.ySegCount; e++)
								for (let t = 0; t <= n.xSegCount; t++) {
									const i = e * (n.xSegCount + 1) + t;
									if (
										((n.attributes.uv.values[2 * i] = t / n.xSegCount),
										(n.attributes.uv.values[2 * i + 1] = 1 - e / n.ySegCount),
										(n.attributes.uvNorm.values[2 * i] = (t / n.xSegCount) * 2 - 1),
										(n.attributes.uvNorm.values[2 * i + 1] = 1 - (e / n.ySegCount) * 2),
										t < n.xSegCount && e < n.ySegCount)
									) {
										const s = e * n.xSegCount + t;
										(n.attributes.index.values[6 * s] = i),
											(n.attributes.index.values[6 * s + 1] = i + 1 + n.xSegCount),
											(n.attributes.index.values[6 * s + 2] = i + 1),
											(n.attributes.index.values[6 * s + 3] = i + 1),
											(n.attributes.index.values[6 * s + 4] = i + 1 + n.xSegCount),
											(n.attributes.index.values[6 * s + 5] = i + 2 + n.xSegCount);
									}
								}
							n.attributes.uv.update(),
								n.attributes.uvNorm.update(),
								n.attributes.index.update(),
								_miniGl.debug("Geometry.setTopology", {
									uv: n.attributes.uv,
									uvNorm: n.attributes.uvNorm,
									index: n.attributes.index
								});
						}
						setSize(width = 1, height = 1, orientation = "xz") {
							const geometry = this;
							(geometry.width = width),
								(geometry.height = height),
								(geometry.orientation = orientation),
								(geometry.attributes.position.values &&
									geometry.attributes.position.values.length ===
										3 * geometry.vertexCount) ||
									(geometry.attributes.position.values = new Float32Array(
										3 * geometry.vertexCount
									));
							const o = width / -2,
								r = height / -2,
								segment_width = width / geometry.xSegCount,
								segment_height = height / geometry.ySegCount;
							for (let yIndex = 0; yIndex <= geometry.ySegCount; yIndex++) {
								const t = r + yIndex * segment_height;
								for (let xIndex = 0; xIndex <= geometry.xSegCount; xIndex++) {
									const r = o + xIndex * segment_width,
										l = yIndex * (geometry.xSegCount + 1) + xIndex;
									(geometry.attributes.position.values[
										3 * l + "xyz".indexOf(orientation[0])
									] = r),
										(geometry.attributes.position.values[
											3 * l + "xyz".indexOf(orientation[1])
										] = -t);
								}
							}
							geometry.attributes.position.update(),
								_miniGl.debug("Geometry.setSize", {
									position: geometry.attributes.position
								});
						}
					}
				},
				Mesh: {
					enumerable: !1,
					value: class {
						constructor(geometry, material) {
							const mesh = this;
							(mesh.geometry = geometry),
								(mesh.material = material),
								(mesh.wireframe = !1),
								(mesh.attributeInstances = []),
								Object.entries(mesh.geometry.attributes).forEach(([e, attribute]) => {
									mesh.attributeInstances.push({
										attribute: attribute,
										location: attribute.attach(e, mesh.material.program)
									});
								}),
								_miniGl.meshes.push(mesh),
								_miniGl.debug("Mesh.constructor", { mesh: mesh });
						}
						draw() {
							context.useProgram(this.material.program),
								this.material.uniformInstances.forEach(({ uniform: e, location: t }) =>
									e.update(t)
								),
								this.attributeInstances.forEach(({ attribute: e, location: t }) =>
									e.use(t)
								),
								context.drawElements(
									this.wireframe ? context.LINES : context.TRIANGLES,
									this.geometry.attributes.index.values.length,
									context.UNSIGNED_SHORT,
									0
								);
						}
						remove() {
							_miniGl.meshes = _miniGl.meshes.filter((e) => e != this);
						}
					}
				},
				Attribute: {
					enumerable: !1,
					value: class {
						constructor(e) {
							(this.type = context.FLOAT),
								(this.normalized = !1),
								(this.buffer = context.createBuffer()),
								Object.assign(this, e),
								this.update();
						}
						update() {
							void 0 !== this.values &&
								(context.bindBuffer(this.target, this.buffer),
								context.bufferData(this.target, this.values, context.STATIC_DRAW));
						}
						attach(e, t) {
							const n = context.getAttribLocation(t, e);
							return (
								this.target === context.ARRAY_BUFFER &&
									(context.enableVertexAttribArray(n),
									context.vertexAttribPointer(
										n,
										this.size,
										this.type,
										this.normalized,
										0,
										0
									)),
								n
							);
						}
						use(e) {
							context.bindBuffer(this.target, this.buffer),
								this.target === context.ARRAY_BUFFER &&
									(context.enableVertexAttribArray(e),
									context.vertexAttribPointer(
										e,
										this.size,
										this.type,
										this.normalized,
										0,
										0
									));
						}
					}
				}
			});
		const a = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1];
		_miniGl.commonUniforms = {
			projectionMatrix: new _miniGl.Uniform({ type: "mat4", value: a }),
			modelViewMatrix: new _miniGl.Uniform({ type: "mat4", value: a }),
			resolution: new _miniGl.Uniform({ type: "vec2", value: [1, 1] }),
			aspectRatio: new _miniGl.Uniform({ type: "float", value: 1 })
		};
	}
	setSize(e = 640, t = 480) {
		(this.width = e),
			(this.height = t),
			(this.canvas.width = e),
			(this.canvas.height = t),
			this.gl.viewport(0, 0, e, t),
			(this.commonUniforms.resolution.value = [e, t]),
			(this.commonUniforms.aspectRatio.value = e / t),
			this.debug("MiniGL.setSize", { width: e, height: t });
	}
	setOrthographicCamera(e = 0, t = 0, n = 0, i = -2e3, s = 2e3) {
		(this.commonUniforms.projectionMatrix.value = [
			2 / this.width,
			0,
			0,
			0,
			0,
			2 / this.height,
			0,
			0,
			0,
			0,
			2 / (i - s),
			0,
			e,
			t,
			n,
			1
		]),
			this.debug(
				"setOrthographicCamera",
				this.commonUniforms.projectionMatrix.value
			);
	}
	render() {
		this.gl.clearColor(0, 0, 0, 0),
			this.gl.clearDepth(1),
			this.meshes.forEach((e) => e.draw());
	}
}
function e(object, propertyName, val) {
	return (
		propertyName in object
			? Object.defineProperty(object, propertyName, {
					value: val,
					enumerable: !0,
					configurable: !0,
					writable: !0
			  })
			: (object[propertyName] = val),
		object
	);
}
class Gradient {
	constructor(...t) {
		e(this, "el", void 0),
			e(this, "cssVarRetries", 0),
			e(this, "maxCssVarRetries", 200),
			e(this, "angle", 0),
			e(this, "isLoadedClass", !1),
			e(this, "isScrolling", !1),
			e(this, "scrollingTimeout", void 0),
			e(this, "scrollingRefreshDelay", 200),
			e(this, "isIntersecting", !1),
			e(this, "shaderFiles", void 0),
			e(this, "vertexShader", void 0),
			e(this, "sectionColors", void 0),
			e(this, "computedCanvasStyle", void 0),
			e(this, "conf", void 0),
			e(this, "uniforms", void 0),
			e(this, "t", 1253106),
			e(this, "last", 0),
			e(this, "width", void 0),
			e(this, "minWidth", 1111),
			e(this, "height", 600),
			e(this, "xSegCount", void 0),
			e(this, "ySegCount", void 0),
			e(this, "mesh", void 0),
			e(this, "material", void 0),
			e(this, "geometry", void 0),
			e(this, "minigl", void 0),
			e(this, "scrollObserver", void 0),
			e(this, "amp", 320),
			e(this, "seed", 5),
			e(this, "freqX", 14e-5),
			e(this, "freqY", 29e-5),
			e(this, "freqDelta", 1e-5),
			e(this, "activeColors", [1, 1, 1, 1]),
			e(this, "isMetaKey", !1),
			e(this, "isGradientLegendVisible", !1),
			e(this, "isMouseDown", !1),
			e(this, "handleScroll", () => {
				clearTimeout(this.scrollingTimeout),
					(this.scrollingTimeout = setTimeout(
						this.handleScrollEnd,
						this.scrollingRefreshDelay
					)),
					this.isGradientLegendVisible && this.hideGradientLegend(),
					this.conf.playing && ((this.isScrolling = !0), this.pause());
			}),
			e(this, "handleScrollEnd", () => {
				(this.isScrolling = !1), this.isIntersecting && this.play();
			}),
			e(this, "resize", () => {
				(this.width = window.innerWidth),
					this.minigl.setSize(this.width, this.height),
					this.minigl.setOrthographicCamera(),
					(this.xSegCount = Math.ceil(this.width * this.conf.density[0])),
					(this.ySegCount = Math.ceil(this.height * this.conf.density[1])),
					this.mesh.geometry.setTopology(this.xSegCount, this.ySegCount),
					this.mesh.geometry.setSize(this.width, this.height),
					(this.mesh.material.uniforms.u_shadow_power.value =
						this.width < 600 ? 5 : 6);
			}),
			e(this, "handleMouseDown", (e) => {
				this.isGradientLegendVisible &&
					((this.isMetaKey = e.metaKey),
					(this.isMouseDown = !0),
					!1 === this.conf.playing && requestAnimationFrame(this.animate));
			}),
			e(this, "handleMouseUp", () => {
				this.isMouseDown = !1;
			}),
			e(this, "animate", (e) => {
				if (!this.shouldSkipFrame(e) || this.isMouseDown) {
					if (
						((this.t += Math.min(e - this.last, 1e3 / 15)),
						(this.last = e),
						this.isMouseDown)
					) {
						let e = 160;
						this.isMetaKey && (e = -160), (this.t += e);
					}
					(this.mesh.material.uniforms.u_time.value = this.t), this.minigl.render();
				}
				if (0 !== this.last && this.isStatic)
					return this.minigl.render(), void this.disconnect();
				(this.conf.playing || this.isMouseDown) &&
					requestAnimationFrame(this.animate);
			}),
			e(this, "addIsLoadedClass", () => {
				!this.isLoadedClass &&
					((this.isLoadedClass = !0),
					this.el.classList.add("isLoaded"),
					setTimeout(() => {
						this.el.parentElement.classList.add("isLoaded");
					}, 3e3));
			}),
			e(this, "pause", () => {
				this.conf.playing = !1;
			}),
			e(this, "play", () => {
				requestAnimationFrame(this.animate), (this.conf.playing = !0);
			}),
			e(
				this,
				"initGradient",
				(selector) => (
					(this.el = document.querySelector(selector)), this.connect(), this
				)
			);
	}
	async connect() {
		(this.shaderFiles = {
			vertex:
				"varying vec3 v_color;\n\nvoid main() {\n  float time = u_time * u_global.noiseSpeed;\n\n  vec2 noiseCoord = resolution * uvNorm * u_global.noiseFreq;\n\n  vec2 st = 1. - uvNorm.xy;\n\n  //\n  // Tilting the plane\n  //\n\n  // Front-to-back tilt\n  float tilt = resolution.y / 2.0 * uvNorm.y;\n\n  // Left-to-right angle\n  float incline = resolution.x * uvNorm.x / 2.0 * u_vertDeform.incline;\n\n  // Up-down shift to offset incline\n  float offset = resolution.x / 2.0 * u_vertDeform.incline * mix(u_vertDeform.offsetBottom, u_vertDeform.offsetTop, uv.y);\n\n  //\n  // Vertex noise\n  //\n\n  float noise = snoise(vec3(\n    noiseCoord.x * u_vertDeform.noiseFreq.x + time * u_vertDeform.noiseFlow,\n    noiseCoord.y * u_vertDeform.noiseFreq.y,\n    time * u_vertDeform.noiseSpeed + u_vertDeform.noiseSeed\n  )) * u_vertDeform.noiseAmp;\n\n  // Fade noise to zero at edges\n  noise *= 1.0 - pow(abs(uvNorm.y), 2.0);\n\n  // Clamp to 0\n  noise = max(0.0, noise);\n\n  vec3 pos = vec3(\n    position.x,\n    position.y + tilt + incline + noise - offset,\n    position.z\n  );\n\n  //\n  // Vertex color, to be passed to fragment shader\n  //\n\n  if (u_active_colors[0] == 1.) {\n    v_color = u_baseColor;\n  }\n\n  for (int i = 0; i < u_waveLayers_length; i++) {\n    if (u_active_colors[i + 1] == 1.) {\n      WaveLayers layer = u_waveLayers[i];\n\n      float noise = smoothstep(\n        layer.noiseFloor,\n        layer.noiseCeil,\n        snoise(vec3(\n          noiseCoord.x * layer.noiseFreq.x + time * layer.noiseFlow,\n          noiseCoord.y * layer.noiseFreq.y,\n          time * layer.noiseSpeed + layer.noiseSeed\n        )) / 2.0 + 0.5\n      );\n\n      v_color = blendNormal(v_color, layer.color, pow(noise, 4.));\n    }\n  }\n\n  //\n  // Finish\n  //\n\n  gl_Position = projectionMatrix * modelViewMatrix * vec4(pos, 1.0);\n}",
			noise:
				"//\n// Description : Array and textureless GLSL 2D/3D/4D simplex\n//               noise functions.\n//      Author : Ian McEwan, Ashima Arts.\n//  Maintainer : stegu\n//     Lastmod : 20110822 (ijm)\n//     License : Copyright (C) 2011 Ashima Arts. All rights reserved.\n//               Distributed under the MIT License. See LICENSE file.\n//               https://github.com/ashima/webgl-noise\n//               https://github.com/stegu/webgl-noise\n//\n\nvec3 mod289(vec3 x) {\n  return x - floor(x * (1.0 / 289.0)) * 289.0;\n}\n\nvec4 mod289(vec4 x) {\n  return x - floor(x * (1.0 / 289.0)) * 289.0;\n}\n\nvec4 permute(vec4 x) {\n    return mod289(((x*34.0)+1.0)*x);\n}\n\nvec4 taylorInvSqrt(vec4 r)\n{\n  return 1.79284291400159 - 0.85373472095314 * r;\n}\n\nfloat snoise(vec3 v)\n{\n  const vec2  C = vec2(1.0/6.0, 1.0/3.0) ;\n  const vec4  D = vec4(0.0, 0.5, 1.0, 2.0);\n\n// First corner\n  vec3 i  = floor(v + dot(v, C.yyy) );\n  vec3 x0 =   v - i + dot(i, C.xxx) ;\n\n// Other corners\n  vec3 g = step(x0.yzx, x0.xyz);\n  vec3 l = 1.0 - g;\n  vec3 i1 = min( g.xyz, l.zxy );\n  vec3 i2 = max( g.xyz, l.zxy );\n\n  //   x0 = x0 - 0.0 + 0.0 * C.xxx;\n  //   x1 = x0 - i1  + 1.0 * C.xxx;\n  //   x2 = x0 - i2  + 2.0 * C.xxx;\n  //   x3 = x0 - 1.0 + 3.0 * C.xxx;\n  vec3 x1 = x0 - i1 + C.xxx;\n  vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y\n  vec3 x3 = x0 - D.yyy;      // -1.0+3.0*C.x = -0.5 = -D.y\n\n// Permutations\n  i = mod289(i);\n  vec4 p = permute( permute( permute(\n            i.z + vec4(0.0, i1.z, i2.z, 1.0 ))\n          + i.y + vec4(0.0, i1.y, i2.y, 1.0 ))\n          + i.x + vec4(0.0, i1.x, i2.x, 1.0 ));\n\n// Gradients: 7x7 points over a square, mapped onto an octahedron.\n// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)\n  float n_ = 0.142857142857; // 1.0/7.0\n  vec3  ns = n_ * D.wyz - D.xzx;\n\n  vec4 j = p - 49.0 * floor(p * ns.z * ns.z);  //  mod(p,7*7)\n\n  vec4 x_ = floor(j * ns.z);\n  vec4 y_ = floor(j - 7.0 * x_ );    // mod(j,N)\n\n  vec4 x = x_ *ns.x + ns.yyyy;\n  vec4 y = y_ *ns.x + ns.yyyy;\n  vec4 h = 1.0 - abs(x) - abs(y);\n\n  vec4 b0 = vec4( x.xy, y.xy );\n  vec4 b1 = vec4( x.zw, y.zw );\n\n  //vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;\n  //vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;\n  vec4 s0 = floor(b0)*2.0 + 1.0;\n  vec4 s1 = floor(b1)*2.0 + 1.0;\n  vec4 sh = -step(h, vec4(0.0));\n\n  vec4 a0 = b0.xzyw + s0.xzyw*sh.xxyy ;\n  vec4 a1 = b1.xzyw + s1.xzyw*sh.zzww ;\n\n  vec3 p0 = vec3(a0.xy,h.x);\n  vec3 p1 = vec3(a0.zw,h.y);\n  vec3 p2 = vec3(a1.xy,h.z);\n  vec3 p3 = vec3(a1.zw,h.w);\n\n//Normalise gradients\n  vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));\n  p0 *= norm.x;\n  p1 *= norm.y;\n  p2 *= norm.z;\n  p3 *= norm.w;\n\n// Mix final noise value\n  vec4 m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), 0.0);\n  m = m * m;\n  return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1),\n                                dot(p2,x2), dot(p3,x3) ) );\n}",
			blend:
				"//\n// https://github.com/jamieowen/glsl-blend\n//\n\n// Normal\n\nvec3 blendNormal(vec3 base, vec3 blend) {\n\treturn blend;\n}\n\nvec3 blendNormal(vec3 base, vec3 blend, float opacity) {\n\treturn (blendNormal(base, blend) * opacity + base * (1.0 - opacity));\n}\n\n// Screen\n\nfloat blendScreen(float base, float blend) {\n\treturn 1.0-((1.0-base)*(1.0-blend));\n}\n\nvec3 blendScreen(vec3 base, vec3 blend) {\n\treturn vec3(blendScreen(base.r,blend.r),blendScreen(base.g,blend.g),blendScreen(base.b,blend.b));\n}\n\nvec3 blendScreen(vec3 base, vec3 blend, float opacity) {\n\treturn (blendScreen(base, blend) * opacity + base * (1.0 - opacity));\n}\n\n// Multiply\n\nvec3 blendMultiply(vec3 base, vec3 blend) {\n\treturn base*blend;\n}\n\nvec3 blendMultiply(vec3 base, vec3 blend, float opacity) {\n\treturn (blendMultiply(base, blend) * opacity + base * (1.0 - opacity));\n}\n\n// Overlay\n\nfloat blendOverlay(float base, float blend) {\n\treturn base<0.5?(2.0*base*blend):(1.0-2.0*(1.0-base)*(1.0-blend));\n}\n\nvec3 blendOverlay(vec3 base, vec3 blend) {\n\treturn vec3(blendOverlay(base.r,blend.r),blendOverlay(base.g,blend.g),blendOverlay(base.b,blend.b));\n}\n\nvec3 blendOverlay(vec3 base, vec3 blend, float opacity) {\n\treturn (blendOverlay(base, blend) * opacity + base * (1.0 - opacity));\n}\n\n// Hard light\n\nvec3 blendHardLight(vec3 base, vec3 blend) {\n\treturn blendOverlay(blend,base);\n}\n\nvec3 blendHardLight(vec3 base, vec3 blend, float opacity) {\n\treturn (blendHardLight(base, blend) * opacity + base * (1.0 - opacity));\n}\n\n// Soft light\n\nfloat blendSoftLight(float base, float blend) {\n\treturn (blend<0.5)?(2.0*base*blend+base*base*(1.0-2.0*blend)):(sqrt(base)*(2.0*blend-1.0)+2.0*base*(1.0-blend));\n}\n\nvec3 blendSoftLight(vec3 base, vec3 blend) {\n\treturn vec3(blendSoftLight(base.r,blend.r),blendSoftLight(base.g,blend.g),blendSoftLight(base.b,blend.b));\n}\n\nvec3 blendSoftLight(vec3 base, vec3 blend, float opacity) {\n\treturn (blendSoftLight(base, blend) * opacity + base * (1.0 - opacity));\n}\n\n// Color dodge\n\nfloat blendColorDodge(float base, float blend) {\n\treturn (blend==1.0)?blend:min(base/(1.0-blend),1.0);\n}\n\nvec3 blendColorDodge(vec3 base, vec3 blend) {\n\treturn vec3(blendColorDodge(base.r,blend.r),blendColorDodge(base.g,blend.g),blendColorDodge(base.b,blend.b));\n}\n\nvec3 blendColorDodge(vec3 base, vec3 blend, float opacity) {\n\treturn (blendColorDodge(base, blend) * opacity + base * (1.0 - opacity));\n}\n\n// Color burn\n\nfloat blendColorBurn(float base, float blend) {\n\treturn (blend==0.0)?blend:max((1.0-((1.0-base)/blend)),0.0);\n}\n\nvec3 blendColorBurn(vec3 base, vec3 blend) {\n\treturn vec3(blendColorBurn(base.r,blend.r),blendColorBurn(base.g,blend.g),blendColorBurn(base.b,blend.b));\n}\n\nvec3 blendColorBurn(vec3 base, vec3 blend, float opacity) {\n\treturn (blendColorBurn(base, blend) * opacity + base * (1.0 - opacity));\n}\n\n// Vivid Light\n\nfloat blendVividLight(float base, float blend) {\n\treturn (blend<0.5)?blendColorBurn(base,(2.0*blend)):blendColorDodge(base,(2.0*(blend-0.5)));\n}\n\nvec3 blendVividLight(vec3 base, vec3 blend) {\n\treturn vec3(blendVividLight(base.r,blend.r),blendVividLight(base.g,blend.g),blendVividLight(base.b,blend.b));\n}\n\nvec3 blendVividLight(vec3 base, vec3 blend, float opacity) {\n\treturn (blendVividLight(base, blend) * opacity + base * (1.0 - opacity));\n}\n\n// Lighten\n\nfloat blendLighten(float base, float blend) {\n\treturn max(blend,base);\n}\n\nvec3 blendLighten(vec3 base, vec3 blend) {\n\treturn vec3(blendLighten(base.r,blend.r),blendLighten(base.g,blend.g),blendLighten(base.b,blend.b));\n}\n\nvec3 blendLighten(vec3 base, vec3 blend, float opacity) {\n\treturn (blendLighten(base, blend) * opacity + base * (1.0 - opacity));\n}\n\n// Linear burn\n\nfloat blendLinearBurn(float base, float blend) {\n\t// Note : Same implementation as BlendSubtractf\n\treturn max(base+blend-1.0,0.0);\n}\n\nvec3 blendLinearBurn(vec3 base, vec3 blend) {\n\t// Note : Same implementation as BlendSubtract\n\treturn max(base+blend-vec3(1.0),vec3(0.0));\n}\n\nvec3 blendLinearBurn(vec3 base, vec3 blend, float opacity) {\n\treturn (blendLinearBurn(base, blend) * opacity + base * (1.0 - opacity));\n}\n\n// Linear dodge\n\nfloat blendLinearDodge(float base, float blend) {\n\t// Note : Same implementation as BlendAddf\n\treturn min(base+blend,1.0);\n}\n\nvec3 blendLinearDodge(vec3 base, vec3 blend) {\n\t// Note : Same implementation as BlendAdd\n\treturn min(base+blend,vec3(1.0));\n}\n\nvec3 blendLinearDodge(vec3 base, vec3 blend, float opacity) {\n\treturn (blendLinearDodge(base, blend) * opacity + base * (1.0 - opacity));\n}\n\n// Linear light\n\nfloat blendLinearLight(float base, float blend) {\n\treturn blend<0.5?blendLinearBurn(base,(2.0*blend)):blendLinearDodge(base,(2.0*(blend-0.5)));\n}\n\nvec3 blendLinearLight(vec3 base, vec3 blend) {\n\treturn vec3(blendLinearLight(base.r,blend.r),blendLinearLight(base.g,blend.g),blendLinearLight(base.b,blend.b));\n}\n\nvec3 blendLinearLight(vec3 base, vec3 blend, float opacity) {\n\treturn (blendLinearLight(base, blend) * opacity + base * (1.0 - opacity));\n}",
			fragment:
				"varying vec3 v_color;\n\nvoid main() {\n  vec3 color = v_color;\n  if (u_darken_top == 1.0) {\n    vec2 st = gl_FragCoord.xy/resolution.xy;\n    color.g -= pow(st.y + sin(-12.0) * st.x, u_shadow_power) * 0.4;\n  }\n  gl_FragColor = vec4(color, 1.0);\n}"
		}),
			(this.conf = {
				presetName: "",
				wireframe: !1,
				density: [0.06, 0.16],
				zoom: 1,
				rotation: 0,
				playing: !0
			}),
			document.querySelectorAll("canvas").length < 1
				? console.log("DID NOT LOAD HERO STRIPE CANVAS")
				: ((this.minigl = new MiniGl(this.el, null, null, !0)),
				  requestAnimationFrame(() => {
						this.el &&
							((this.computedCanvasStyle = getComputedStyle(this.el)),
							this.waitForCssVars());
				  }));
	}
	disconnect() {
		this.scrollObserver &&
			(window.removeEventListener("scroll", this.handleScroll),
			window.removeEventListener("mousedown", this.handleMouseDown),
			window.removeEventListener("mouseup", this.handleMouseUp),
			window.removeEventListener("keydown", this.handleKeyDown),
			this.scrollObserver.disconnect()),
			window.removeEventListener("resize", this.resize);
	}
	initMaterial() {
		this.uniforms = {
			u_time: new this.minigl.Uniform({ value: 0 }),
			u_shadow_power: new this.minigl.Uniform({ value: 5 }),
			u_darken_top: new this.minigl.Uniform({
				value: "" === this.el.dataset.jsDarkenTop ? 1 : 0
			}),
			u_active_colors: new this.minigl.Uniform({
				value: this.activeColors,
				type: "vec4"
			}),
			u_global: new this.minigl.Uniform({
				value: {
					noiseFreq: new this.minigl.Uniform({
						value: [this.freqX, this.freqY],
						type: "vec2"
					}),
					noiseSpeed: new this.minigl.Uniform({ value: 5e-6 })
				},
				type: "struct"
			}),
			u_vertDeform: new this.minigl.Uniform({
				value: {
					incline: new this.minigl.Uniform({
						value: Math.sin(this.angle) / Math.cos(this.angle)
					}),
					offsetTop: new this.minigl.Uniform({ value: -0.5 }),
					offsetBottom: new this.minigl.Uniform({ value: -0.5 }),
					noiseFreq: new this.minigl.Uniform({ value: [3, 4], type: "vec2" }),
					noiseAmp: new this.minigl.Uniform({ value: this.amp }),
					noiseSpeed: new this.minigl.Uniform({ value: 10 }),
					noiseFlow: new this.minigl.Uniform({ value: 3 }),
					noiseSeed: new this.minigl.Uniform({ value: this.seed })
				},
				type: "struct",
				excludeFrom: "fragment"
			}),
			u_baseColor: new this.minigl.Uniform({
				value: this.sectionColors[0],
				type: "vec3",
				excludeFrom: "fragment"
			}),
			u_waveLayers: new this.minigl.Uniform({
				value: [],
				excludeFrom: "fragment",
				type: "array"
			})
		};
		for (let e = 1; e < this.sectionColors.length; e += 1)
			this.uniforms.u_waveLayers.value.push(
				new this.minigl.Uniform({
					value: {
						color: new this.minigl.Uniform({
							value: this.sectionColors[e],
							type: "vec3"
						}),
						noiseFreq: new this.minigl.Uniform({
							value: [
								2 + e / this.sectionColors.length,
								3 + e / this.sectionColors.length
							],
							type: "vec2"
						}),
						noiseSpeed: new this.minigl.Uniform({ value: 11 + 0.3 * e }),
						noiseFlow: new this.minigl.Uniform({ value: 6.5 + 0.3 * e }),
						noiseSeed: new this.minigl.Uniform({ value: this.seed + 10 * e }),
						noiseFloor: new this.minigl.Uniform({ value: 0.1 }),
						noiseCeil: new this.minigl.Uniform({ value: 0.63 + 0.07 * e })
					},
					type: "struct"
				})
			);
		return (
			(this.vertexShader = [
				this.shaderFiles.noise,
				this.shaderFiles.blend,
				this.shaderFiles.vertex
			].join("\n\n")),
			new this.minigl.Material(
				this.vertexShader,
				this.shaderFiles.fragment,
				this.uniforms
			)
		);
	}
	initMesh() {
		(this.material = this.initMaterial()),
			(this.geometry = new this.minigl.PlaneGeometry()),
			(this.mesh = new this.minigl.Mesh(this.geometry, this.material));
	}
	shouldSkipFrame(e) {
		return (
			!!window.document.hidden ||
			!this.conf.playing ||
			parseInt(e, 10) % 2 == 0 ||
			void 0
		);
	}
	updateFrequency(e) {
		(this.freqX += e), (this.freqY += e);
	}
	toggleColor(index) {
		this.activeColors[index] = 0 === this.activeColors[index] ? 1 : 0;
	}
	showGradientLegend() {
		this.width > this.minWidth &&
			((this.isGradientLegendVisible = !0),
			document.body.classList.add("isGradientLegendVisible"));
	}
	hideGradientLegend() {
		(this.isGradientLegendVisible = !1),
			document.body.classList.remove("isGradientLegendVisible");
	}
	init() {
		this.initGradientColors(),
			this.initMesh(),
			this.resize(),
			requestAnimationFrame(this.animate),
			window.addEventListener("resize", this.resize);
	}
	waitForCssVars() {
		if (
			this.computedCanvasStyle &&
			-1 !==
				this.computedCanvasStyle.getPropertyValue("--gradient-color-1").indexOf("#")
		)
			this.init(), this.addIsLoadedClass();
		else {
			if (((this.cssVarRetries += 1), this.cssVarRetries > this.maxCssVarRetries))
				return (
					(this.sectionColors = [16711680, 16711680, 16711935, 65280, 255]),
					void this.init()
				);
			requestAnimationFrame(() => this.waitForCssVars());
		}
	}
	initGradientColors() {
		this.sectionColors = [
			"--gradient-color-1",
			"--gradient-color-2",
			"--gradient-color-3",
			"--gradient-color-4"
		]
			.map((cssPropertyName) => {
				let hex = this.computedCanvasStyle.getPropertyValue(cssPropertyName).trim();
				if (4 === hex.length) {
					const hexTemp = hex
						.substr(1)
						.split("")
						.map((hexTemp) => hexTemp + hexTemp)
						.join("");
					hex = `#${hexTemp}`;
				}
				return hex && `0x${hex.substr(1)}`;
			})
			.filter(Boolean)
			.map(normalizeColor);
	}
}

              
            
!
999px

Console