Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URLs added here will be added as <link>s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Auto Save

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                <canvas id="canvas"></canvas>
              
            
!

CSS

              
                canvas {
  position: fixed;
  top: 0;
  left: 0;
  width: 100%;
  height: 100%;
}
              
            
!

JS

              
                // depending on your hardware this works up to just over 8.38 million
// above that it will hit the size limit of a storage buffer
const nInstances = 1000000; 

const speed = 0.6;
const stepAmt = 320;
const worldSize = 300;
const curlStep = 0.25;
const curlOffset = [
  Math.random() * 100 - 50,
  Math.random() * 100 - 50,
  Math.random() * 100 - 50
];
const rotSpeed = 0.0002;

const workgroupSize = nInstances > 4000000 ? [ 16, 16 ] : [ 8, 8 ];
const computeThreads = workgroupSize[0] * workgroupSize[1];
const computeWorkgroups = Math.ceil(nInstances / computeThreads);

import { mat4, vec3 } from 'https://unpkg.com/wgpu-matrix@2.4.2/dist/2.x/wgpu-matrix.module.js';

const shader = `
struct UBO {
  time: f32,
  resolution: vec2f,
  projection: mat4x4f,
  view: mat4x4f
}

@group(0) @binding(0) var<uniform> uniforms: UBO;

struct VSIn {
  @location(0) in_pos: vec3f,
  @location(1) uv: vec2f,
  @location(2) noise: vec3f
};

struct VSOut {
  @builtin(position) position: vec4<f32>,
  @location(0) uv: vec2<f32>
};

@vertex
fn vs_main(vs_in: VSIn) -> VSOut {
  let r = uniforms.time * ${rotSpeed};
  let s = sin(r);
  let c = cos(r);
  
  let xform = mat4x4f(
    vec4(1, 0, 0, 0),
    vec4(0, 1, 0, 0),
    vec4(0, 0, 1, 0),
    vec4(vs_in.noise, 1)
  );
  
  let rot = mat4x4f(
    vec4(c, 0, s, 0),
    vec4(0, 1, 0, 0),
    vec4(-s, 0, c, 0),
    vec4(0, 0, 0, 1)
  );

  var matrix = uniforms.view * rot * xform;
  matrix[0][0] = 1.0; matrix[0][1] = 0.0; matrix[0][2] = 0.0; 
  matrix[1][0] = 0.0; matrix[1][1] = 1.0; matrix[1][2] = 0.0;
  matrix[2][0] = 0.0; matrix[2][1] = 0.0; matrix[2][2] = 1.0; 
  
  let pos = vec4<f32>(vs_in.in_pos, 1.0);
  let abs_pos = uniforms.projection * matrix * pos;
  
  return VSOut(
    abs_pos,
    vs_in.uv
  );
}

@fragment
fn fs_main(vs_out: VSOut) -> @location(0) vec4<f32> {
  let color = vec3(0.3, 0.6, 1.0);
  let a = mix(0.3, 0.0, smoothstep(0.0, 0.2, length(vs_out.uv - 0.5)));
  return vec4(color, a);
}
`;

const compute = `
@group(0) @binding(0) var<storage, read_write> noise: array<vec3f>;
const PI = 3.1415926535;
const sw = vec2f(0.0, 1e-4);

const speed = ${speed};
const step_amt = ${stepAmt};
const world = ${worldSize};
const curl_step = ${curlStep};
const curl_offset = vec3(${curlOffset});

//	Simplex 3D Noise 
//	by Ian McEwan, Ashima Arts
//  MIT License. © Ian McEwan, Stefan Gustavson, Munrocket, Johan Helsing
//

fn mod289(x: f32) -> f32 {
    return x - floor(x * (1. / 289.)) * 289.;
}

fn mod289_3(x: vec3<f32>) -> vec3<f32> {
    return x - floor(x * (1. / 289.)) * 289.;
}

fn mod289_4(x: vec4<f32>) -> vec4<f32> {
    return x - floor(x * (1. / 289.)) * 289.;
}

fn permute4(x: vec4<f32>) -> vec4<f32> {
    return mod289_4(((x * 34.) + 1.) * x);
}

fn taylorInvSqrt(r: vec4f) -> vec4f {
  return 1.79284291400159 - 0.85373472095314 * r;
}

fn snoise(v: vec3f) -> f32 { 
  const C: vec2f = vec2(1.0/6.0, 1.0/3.0);
  const D: vec4f = vec4(0.0, 0.5, 1.0, 2.0);

// First corner
  var i = floor(v + dot(v, C.yyy) );
  var x0 = v - i + dot(i, C.xxx) ;

// Other corners
  var g = step(x0.yzx, x0.xyz);
  var l = 1.0 - g;
  var i1 = min( g.xyz, l.zxy );
  var i2 = max( g.xyz, l.zxy );

  //  x0 = x0 - 0. + 0.0 * C 
  var x1 = x0 - i1 + 1.0 * C.xxx;
  var x2 = x0 - i2 + 2.0 * C.xxx;
  var x3 = x0 - 1. + 3.0 * C.xxx;

// Permutations
  i = mod289_3(i); 
  var p = permute4( permute4( permute4( 
             i.z + vec4(0.0, i1.z, i2.z, 1.0 ))
           + i.y + vec4(0.0, i1.y, i2.y, 1.0 )) 
           + i.x + vec4(0.0, i1.x, i2.x, 1.0 ));

// Gradients
// ( N*N points uniformly over a square, mapped onto an octahedron.)
  var n_ = 1.0/7.0; // N=7
  var ns = n_ * D.wyz - D.xzx;

  var j = p - 49.0 * floor(p * ns.z *ns.z);  //  mod(p,N*N)

  var x_ = floor(j * ns.z);
  var y_ = floor(j - 7.0 * x_ );    // mod(j,N)

  var x = x_ *ns.x + ns.yyyy;
  var y = y_ *ns.x + ns.yyyy;
  var h = 1.0 - abs(x) - abs(y);

  var b0 = vec4( x.xy, y.xy );
  var b1 = vec4( x.zw, y.zw );

  var s0 = floor(b0)*2.0 + 1.0;
  var s1 = floor(b1)*2.0 + 1.0;
  var sh = -step(h, vec4(0.0));

  var a0 = b0.xzyw + s0.xzyw*sh.xxyy ;
  var a1 = b1.xzyw + s1.xzyw*sh.zzww ;

  var p0 = vec3(a0.xy,h.x);
  var p1 = vec3(a0.zw,h.y);
  var p2 = vec3(a1.xy,h.z);
  var p3 = vec3(a1.zw,h.w);

//Normalise gradients
  var norm = taylorInvSqrt(vec4(
    dot(p0,p0), dot(p1,p1),
    dot(p2, p2), dot(p3,p3)
  ));

  p0 *= norm.x;
  p1 *= norm.y;
  p2 *= norm.z;
  p3 *= norm.w;

// Mix final noise value
  var m = max(0.6 - vec4(dot(x0,x0), dot(x1,x1), dot(x2,x2), dot(x3,x3)), vec4(0.0));
  m = m * m;
  return 42.0 * dot( m*m, vec4( dot(p0,x0), dot(p1,x1), 
                                dot(p2,x2), dot(p3,x3) ) );
}

fn noiseGrad(pos: vec3f) -> vec3f {
  let x1 = snoise(pos + sw.yxx);
  let x2 = snoise(pos - sw.yxx);
  let a = (x1 - x2) / (2 * sw.y);
  
  let y1 = snoise(pos + sw.xyx);
  let y2 = snoise(pos - sw.xyx);
  let b = (y1 - y2) / (2 * sw.y);
  
  let z1 = snoise(pos + sw.xxy);
  let z2 = snoise(pos - sw.xxy);
  let c = (z1 - z2) / (2 * sw.y);
  
  return vec3(a, b, c);
}

fn curl(pos: vec3f) -> vec3f {
  let noiseGrad0 = normalize(noiseGrad(pos));
  let noiseGrad1 = normalize(noiseGrad(pos + curl_step));
  
  return cross(noiseGrad0, noiseGrad1);
}

fn start_pos(cur: vec3f) -> vec3f {

// This is the "correct" way to spread points randomly
// through a sphere, but it breaks reset_pos, which
// breaks everything

  // let theta = cur.x * PI * 2.0;
  // let phi = acos(2.0 * cur.y * PI - 1.0);
  // let radius = pow(cur.z, 1.0 / 3.0) * world;
  
  let theta = cur.x * PI * 2.0;
  let phi = cur.y * PI;
  let radius = 10 + cur.z * world;
  
  return vec3(
    radius * sin(phi) * cos(theta),
    radius * sin(phi) * sin(theta),
    radius * cos(phi)
  );
}

fn rand(co: vec2f) -> f32 {
  return fract(sin(dot(co, vec2(12.9898, 78.233))) * 43758.5453);
}

fn reset_pos(cur: vec3f) -> vec3f {
  let input = abs(vec3(
    rand(cur.yz),
    rand(cur.xz),
    rand(cur.xy)
  ));
  
  return start_pos(input);
}

fn step_noise(cur: vec3f) -> vec3f {
  let curl = curl(cur / step_amt + curl_offset) * speed;
  let next = cur + curl;
  
  return next;
}

fn invocation_id(
  local_invocation_index: u32,
  workgroup_id: vec3u,
  num_workgroups: vec3u) -> u32 {
  let workgroup_index =  
     workgroup_id.x +
     workgroup_id.y * num_workgroups.x +
     workgroup_id.z * num_workgroups.x * num_workgroups.y;
     
  let global_invocation_index =
     workgroup_index * ${computeThreads} +
     local_invocation_index;
     
   return global_invocation_index;
}

@compute @workgroup_size(${workgroupSize}) fn initNoise(
  @builtin(local_invocation_index) lii: u32,
  @builtin(workgroup_id) wid: vec3<u32>,
  @builtin(num_workgroups) nwg: vec3<u32>
) {
  let id = invocation_id(lii, wid, nwg);
  noise[id] = start_pos(noise[id]);
}

@compute @workgroup_size(${workgroupSize}) fn computeNoise(
  @builtin(local_invocation_index) lii: u32,
  @builtin(workgroup_id) wid: vec3<u32>,
  @builtin(num_workgroups) nwg: vec3<u32>
) {
  let id = invocation_id(lii, wid, nwg);
  let cur = step_noise(noise[id]);

  let start = reset_pos(cur);
  let len = length(cur);
  noise[id] = mix(cur, start, step(1.0, len / world));
}
`;

const uniforms = new Float32Array([
  0, 0, 0, 0,
  
  0, 0, 0, 0, // projection matrix
  0, 0, 0, 0,
  0, 0, 0, 0,
  0, 0, 0, 0,
  
  0, 0, 0, 0, // view matrix
  0, 0, 0, 0,
  0, 0, 0, 0,
  0, 0, 0, 0
]);

const canvasSize = new Float32Array([ 1, 1 ]);

const projectionMatrix = mat4.create();
const viewMatrix = mat4.identity();
mat4.translate(viewMatrix, vec3.fromValues(0, 0, -300), viewMatrix);

const instances = new Float32Array(nInstances * 4);
const initInstances = (device, instanceBuffer) => {
  for (let i = 0; i < nInstances; i++) {
    instances.set([
      Math.random(),
      Math.random(),
      Math.random(),
      0
    ], i * 4);
  }
  device.queue.writeBuffer(instanceBuffer, 0, instances);
}

const init = async (canvas) => {
  const gpu = navigator.gpu;
  const adapter = await gpu.requestAdapter();
  const device = await adapter.requestDevice();
  const queue = device.queue;

  const context = canvas.getContext("webgpu");
  context.configure({
    device,
    format: gpu.getPreferredCanvasFormat(),
    usage: GPUTextureUsage.RENDER_ATTACHMENT,
    alphaMode: 'opaque'
  });
  
  const dpr = Math.min(window.devicePixelRatio || 1, 2);

  canvas.width = canvas.offsetWidth * dpr;
  canvas.height = canvas.offsetHeight * dpr;
  
  canvasSize.set([ canvas.width, canvas.height ]);

  return { gpu, device, queue, canvas, context };
};

const initTextures = ({ canvas, context }) => {
  const ret = { };
  
  ret.resize = () => {
    canvas.width = canvas.offsetWidth * window.devicePixelRatio;
    canvas.height = canvas.offsetHeight * window.devicePixelRatio;
    canvasSize.set([ canvas.width, canvas.height ]);
    const aspect = canvasSize[0] / canvasSize[1];
  
    mat4.perspective(
      60 * Math.PI / 180,
      aspect,
      0.1,
      2000.0,
      projectionMatrix
    );
  };
  
  ret.update = () => {
    ret.colorTexture = context.getCurrentTexture();
    ret.colorTextureView = ret.colorTexture.createView();
  }
  
  return ret;
};

const createBuffer = (device, arr, usage) => {
  const buffer = device.createBuffer({
    size: arr.byteLength,
    usage,
    mappedAtCreation: true
  });
  
  const writeArray = new arr.constructor(buffer.getMappedRange());
  writeArray.set(arr);
  buffer.unmap();
  
  return buffer;
};

const initUniformBindGroup = (device, pipeline, ubo, instanceBuffer) => {
  const uniformBindGroup = device.createBindGroup({
    layout: pipeline.getBindGroupLayout(0),
    entries: [
      {
        binding: 0,
        resource: {
          buffer: ubo
        }
      }
    ]
  });
  return uniformBindGroup;
};

const initBuffers = async (device) => {
  const positions = new Float32Array([
     1, -1, 0, 1, 0, // x, y, z, u, v
    -1, -1, 0, 0, 0,
    -1,  1, 0, 0, 1,
     1,  1, 0, 1, 1
  ]);
  const indices = new Uint16Array([ 0, 1, 2, 0, 2, 3 ]);

  const positionBuffer = createBuffer(device, positions, GPUBufferUsage.VERTEX);
  const indexBuffer = createBuffer(device, indices, GPUBufferUsage.INDEX);
  const instanceBuffer = createBuffer(device, instances, 
      GPUBufferUsage.STORAGE | GPUBufferUsage.VERTEX | GPUBufferUsage.COPY_DST);
  const ubo = createBuffer(device, uniforms, 
     GPUBufferUsage.UNIFORM | GPUBufferUsage.COPY_DST);
  return { positionBuffer, indexBuffer, instanceBuffer, ubo };
};

const initPipeline = (device, gpu) => {
  const shaders = device.createShaderModule({
    code: shader
  });
  
  const pipelineDesc = {
    layout: "auto",
    vertex: {
      module: shaders,
      entryPoint: 'vs_main',
      buffers: [
        {
          attributes: [
            {
              shaderLocation: 0,
              offset: 0,
              format: 'float32x3'
            },
            {
              shaderLocation: 1,
              offset: 4 * 3,
              format: 'float32x2'
            }
          ],
          arrayStride: 4 * 5,
          stepMode: 'vertex'
        },
        {
          attributes: [
            {
              shaderLocation: 2,
              offset: 0,
              format: 'float32x3'
            }
          ],
          arrayStride: 4 * 4,
          stepMode: 'instance'
        }
      ]
    },
    fragment: {
      module: shaders,
      entryPoint: 'fs_main',
      targets: [
        {
          format: gpu.getPreferredCanvasFormat(),
          writeMask: GPUColorWrite.ALL,
          blend: {
            color: {
              srcFactor: 'src-alpha',
              dstFactor: 'one',
              operation: 'add',
            },
            alpha: {
              srcFactor: 'zero',
              dstFactor: 'one',
              operation: 'add',
            }
          }
        } 
      ]
    },
    primitive: {
      frontFace: 'cw',
      cullMode: 'none',
      topology: 'triangle-list'
    }
  };
  
  const pipeline = device.createRenderPipeline(pipelineDesc);
  
  return pipeline;
};

const computePipeline = (device, instanceBuffer, entryPoint) => {
  const pipeline = device.createComputePipeline({
    label: "Compute pipeline",
    layout: "auto",
    compute: {
      module: device.createShaderModule({
        code: compute
      }),
      entryPoint
    }
  })
  
  const bindGroup = device.createBindGroup({
    layout: pipeline.getBindGroupLayout(0),
    entries: [
      { binding: 0, resource: { buffer: instanceBuffer } }
    ]
  });
  
  return { pipeline, bindGroup };
};

const stepCompute = (compute, { device, queue }) => {
  const commandEncoder = device.createCommandEncoder();
  
  const computePass = commandEncoder.beginComputePass({ label: "Compute pass" });
  computePass.setPipeline(compute.pipeline);
  computePass.setBindGroup(0, compute.bindGroup);
  computePass.dispatchWorkgroups(computeWorkgroups);
  computePass.end();
  
  queue.submit([ commandEncoder.finish() ]);
};

const encodeCommands = ({ device, canvas, queue }, textures, buffers, pipeline, ubg, compute) => {
  const colorAttachment = {
    view: textures.colorTextureView,
    clearValue: { r: 0, g: 0, b: 0, a: 1 },
    loadOp: 'clear',
    storeOp: 'store'
  };

  const renderPassDesc = {
    colorAttachments: [ colorAttachment ]
  };
  
  const [ width, height ] = canvasSize;
  
  const commandEncoder = device.createCommandEncoder();
  
  const computePass = commandEncoder.beginComputePass({ label: "Compute pass" });
  computePass.setPipeline(compute.pipeline);
  computePass.setBindGroup(0, compute.bindGroup);
  computePass.dispatchWorkgroups(computeWorkgroups);
  computePass.end();
  
  const passEncoder = commandEncoder.beginRenderPass(renderPassDesc);
  passEncoder.setPipeline(pipeline);
  passEncoder.setViewport(0, 0, width, height, 0, 1);
  passEncoder.setScissorRect(0, 0, width, height);
  passEncoder.setVertexBuffer(0, buffers.positionBuffer);
  passEncoder.setVertexBuffer(1, buffers.instanceBuffer);
  passEncoder.setIndexBuffer(buffers.indexBuffer, 'uint16');
  passEncoder.setBindGroup(0, ubg);
  passEncoder.drawIndexed(6, nInstances);
  passEncoder.end();
  
  queue.submit([ commandEncoder.finish() ]);
};

(async () => {
  const canvas = document.getElementById("canvas");
  const config = await init(canvas);
  const { device, gpu, queue } = config;
  
  const textures = initTextures(config);
  const buffers = await initBuffers(device);
  const pipeline = initPipeline(device, gpu);
  const ubg = initUniformBindGroup(device, pipeline, buffers.ubo, buffers.instanceBuffer);
  const initCompute = computePipeline(device, buffers.instanceBuffer, "initNoise");
  const compute = computePipeline(device, buffers.instanceBuffer, "computeNoise");
  
  initInstances(device, buffers.instanceBuffer);
  
  stepCompute(initCompute, config);
 
  textures.resize();
  window.addEventListener('resize', textures.resize);
  
  const render = () => {
    uniforms.set([ performance.now() ], 0);
    uniforms.set(canvasSize, 2);
    uniforms.set(projectionMatrix, 4);
    uniforms.set(viewMatrix, 20);

    queue.writeBuffer(buffers.ubo, 0, uniforms);
    
    textures.update();
    
    encodeCommands(config, textures, buffers, pipeline, ubg, compute);
    
    requestAnimationFrame(render);
  };
  
  render();
})();

              
            
!
999px

Console