JavaScript preprocessors can help make authoring JavaScript easier and more convenient. For instance, CoffeeScript can help prevent easy-to-make mistakes and offer a cleaner syntax and Babel can bring ECMAScript 6 features to browsers that only support ECMAScript 5.

Any URL's added here will be added as `<script>`

s in order, and run *before* the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.

If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.

You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.

+ add another resource

HTML Settings

Here you can Sed posuere consectetur est at lobortis. Donec ullamcorper nulla non metus auctor fringilla. Maecenas sed diam eget risus varius blandit sit amet non magna. Donec id elit non mi porta gravida at eget metus. Praesent commodo cursus magna, vel scelerisque nisl consectetur et.

` ````
#https://machinelearningmastery.com/time-series-forecasting-long-short-term-memory-network-python/
from pandas import DataFrame
from pandas import Series
from pandas import concat
from pandas import read_csv
from pandas import read_sql_query
from pandas import datetime
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from math import sqrt
from matplotlib import pyplot
import numpy
import MySQLdb
import sys
#definiciones db
sql_hn = "********"
sql_p = 3306
sql_uid = "********"
sql_pwd = "********"
sql_db = "********"
#conexión db
conn = MySQLdb.connect(
host = sql_hn,
port = sql_p,
user = sql_uid,
passwd = sql_pwd,
db = sql_db
)
cursor = conn.cursor()
def imprimir(text):
sys.stdout.write(str(text))
sys.stdout.flush()
# date-time parsing function for loading the dataset
def parser(x):
return datetime.strptime(x, '%Y-%m-%d %H:%M:%S')
# frame a sequence as a supervised learning problem
def timeseries_to_supervised(data, lag=1):
df = DataFrame(data)
columns = [df.shift(i) for i in range(1, lag+1)]
columns.append(df)
df = concat(columns, axis=1)
df.fillna(0, inplace=True)
return df
# create a differenced series
def difference(dataset, interval=1):
diff = list()
for i in range(interval, len(dataset)):
value = dataset[i] - dataset[i - interval]
diff.append(value)
return Series(diff)
# invert differenced value
def inverse_difference(history, yhat, interval=1):
return yhat + history[-interval]
# scale train and test data to [-1, 1]
def scale(train, test):
# fit scaler
scaler = MinMaxScaler(feature_range=(-1, 1))
scaler = scaler.fit(train)
# transform train
train = train.reshape(train.shape[0], train.shape[1])
train_scaled = scaler.transform(train)
# transform test
test = test.reshape(test.shape[0], test.shape[1])
test_scaled = scaler.transform(test)
return scaler, train_scaled, test_scaled
# inverse scaling for a forecasted value
def invert_scale(scaler, X, value):
new_row = [x for x in X] + [value]
array = numpy.array(new_row)
array = array.reshape(1, len(array))
inverted = scaler.inverse_transform(array)
return inverted[0, -1]
# fit an LSTM network to training data
def fit_lstm(train, batch_size, nb_epoch, neurons):
X, y = train[:, 0:-1], train[:, -1]
X = X.reshape(X.shape[0], 1, X.shape[1])
model = Sequential()
model.add(LSTM(neurons, batch_input_shape=(batch_size, X.shape[1], X.shape[2]), stateful=True))
model.add(Dense(1))
model.compile(loss='mean_squared_error', optimizer='adam')
for i in range(nb_epoch):
model.fit(X, y, epochs=1, batch_size=batch_size, verbose=1, shuffle=False)
model.reset_states()
return model
# make a one-step forecast
def forecast_lstm(model, batch_size, X):
X = X.reshape(1, 1, len(X))
yhat = model.predict(X, batch_size=batch_size)
return yhat[0,0]
seleccion = " \
SELECT creacion, \
menores \
FROM( \
SELECT creacion, \
COUNT(*) as maximo, \
(SUM(CASE WHEN value < 2 THEN 1 ELSE 0 END)) as menores, \
(SUM(CASE WHEN value >= 2 THEN 1 ELSE 0 END)) as mayores, \
((SUM(CASE WHEN value < 2 THEN 1 ELSE 0 END)) - (SUM(CASE WHEN value >= 2 THEN 1 ELSE 0 END))) as diferencia, \
FLOOR(UNIX_TIMESTAMP(creacion)/(2 * 60)) AS lapso, \
DATE_FORMAT(creacion, '%T') as sub_creacion \
FROM crawler \
WHERE round > 500000 \
GROUP BY lapso \
) as sub \
ORDER BY creacion DESC"
# load dataset
#series = read_csv('shampoo.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser)
#series = read_csv('numeros.csv', header=0, parse_dates=[0], index_col=0, squeeze=True, date_parser=parser)
series = read_sql_query(seleccion, conn, parse_dates=['creacion'], index_col=['creacion'])
# transform data to be stationary
raw_values = series.values
diff_values = difference(raw_values, 1)
# transform data to be supervised learning
supervised = timeseries_to_supervised(diff_values, 1)
supervised_values = supervised.values
# split data into train and test-sets
#train, test = supervised_values[0:-12], supervised_values[-12:]
#dividimos la información
train_size = int(len(supervised_values) * 0.50)
test_size = len(supervised_values) - train_size
train, test = supervised_values[0:train_size,:], supervised_values[train_size:len(supervised_values),:]
# transform the scale of the data
scaler, train_scaled, test_scaled = scale(train, test)
# repeat experiment
repeats = 1
epochos = 1
error_scores = list()
for r in range(repeats):
# fit the model
lstm_model = fit_lstm(train_scaled, 1, epochos, 16)
# forecast the entire training dataset to build up state for forecasting
train_reshaped = train_scaled[:, 0].reshape(len(train_scaled), 1, 1)
lstm_model.predict(train_reshaped, batch_size=1)
# walk-forward validation on the test data
predictions = list()
for i in range(len(test_scaled)):
# make one-step forecast
X, y = test_scaled[i, 0:-1], test_scaled[i, -1]
yhat = forecast_lstm(lstm_model, 1, X)
# invert scaling
yhat = invert_scale(scaler, X, yhat)
# invert differencing
yhat = inverse_difference(raw_values, yhat, len(test_scaled)+1-i)
# store forecast
predictions.append(yhat)
# report performance
rmse = sqrt(mean_squared_error(raw_values[-test_size:], predictions))
print('%d) Test RMSE: %.3f' % (r+1, rmse))
error_scores.append(rmse)
# summarize results
#results = DataFrame()
#results['rmse'] = error_scores
#print(results.describe())
#results.boxplot()
#pyplot.show()
# report performance
#rmse = sqrt(mean_squared_error(raw_values[-test_size:], predictions))
#print('Test RMSE: %.3f' % rmse)
# line plot of observed vs predicted
#pyplot.plot(raw_values[-test_size:])
#pyplot.plot(predictions)
#pyplot.show()
print("******************* PREDICCIONES *******************")
while True:
#pedimos la informacion
seleccion = " \
SELECT creacion, \
menores \
FROM( \
SELECT creacion, \
COUNT(*) as maximo, \
(SUM(CASE WHEN value < 2 THEN 1 ELSE 0 END)) as menores, \
(SUM(CASE WHEN value >= 2 THEN 1 ELSE 0 END)) as mayores, \
((SUM(CASE WHEN value < 2 THEN 1 ELSE 0 END)) - (SUM(CASE WHEN value >= 2 THEN 1 ELSE 0 END))) as diferencia, \
FLOOR(UNIX_TIMESTAMP(creacion)/(2 * 60)) AS lapso, \
DATE_FORMAT(creacion, '%T') as sub_creacion \
FROM crawler \
GROUP BY lapso \
ORDER BY creacion DESC \
LIMIT 0, 300 \
) as sub \
ORDER BY creacion DESC"
#seleccionamos la información para hacer la predicción
predecir = read_sql_query(seleccion, conn, parse_dates=['creacion'], index_col=['creacion'])
#limpiamos la cache
conn.commit()
imprimir(predecir)
yhat = forecast_lstm(lstm_model, 1, predecir)
#ynew = ynew[0]
imprimir(yhat)
```

999px

Loading
..................

Alt F
Opt F
Find & Replace

Also see: Tab Triggers