Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URL's added here will be added as <link>s in order, and before the CSS in the editor. If you link to another Pen, it will include the CSS from that Pen. If the preprocessor matches, it will attempt to combine them before processing.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Save Automatically?

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                <div class="wrapper">
	<canvas width="600" height="300" id="canvasObj"></canvas>
	<div class="button">Run</div>
	<div id="loading" class="loading opacity__animate">
		<div class="rect1"></div>
		<div class="rect2"></div>
		<div class="rect3"></div>
		<div class="rect4"></div>
	</div>
</div>
              
            
!

CSS

              
                canvas {
	border: solid 1px #333;
}

.button {
	position: absolute;
	top: 20px;
	left: 20px;
	width: 100px;
	height: 38px;
	background-color: rgba(0, 0, 0, 0.5);
	border-radius: 5px;
	cursor: pointer;
	color: #fff;
	font-size: 20px;
	line-height: 38px;
	text-align: center;
	-webkit-touch-callout: none;
	-webkit-user-select: none;
	-khtml-user-select: none;
	-moz-user-select: none;
	-ms-user-select: none;
	user-select: none;
	-webkit-transition: all 0.4s;
	-o-transition: all 0.4s;
	transition: all 0.4s;
}

.button:hover {
	background-color: rgba(0, 0, 0, 0.8);
}

.loading {
	width: 30px;
	height: 50px;
	text-align: center;
	font-size: 10px;
	position: absolute;
	left: 50%;
	top: 50%;
	opacity: 0;
	margin-left: -25px;
	margin-top: -35px;
	background-color: rgba(0, 0, 0, 0.4);
	border-radius: 10px;
	padding: 10px;
}

.wrapper {
	width: 600px;
	position: relative;
}

.opacity__animate {
	-webkit-transition: opacity 0.8s;
	-o-transition: opacity 0.8s;
	transition: opacity 0.8s;
}

.loading > div {
	background-color: #fff;
	height: 100%;
	width: 3px;
	display: inline-block;
	-webkit-animation: stretchdelay 1.2s infinite ease-in-out;
	animation: stretchdelay 1.2s infinite ease-in-out;
}

.loading .rect2 {
	-webkit-animation-delay: -1.1s;
	animation-delay: -1.1s;
}

.loading .rect3 {
	-webkit-animation-delay: -1.0s;
	animation-delay: -1.0s;
}

.loading .rect4 {
	-webkit-animation-delay: -0.9s;
	animation-delay: -0.9s;
}

@-webkit-keyframes stretchdelay {
	0%,
	40%,
	100% {
		-webkit-transform: scaleY(0.4)
	}
	20% {
		-webkit-transform: scaleY(1.0)
	}
}

@keyframes stretchdelay {
	0%,
	40%,
	100% {
		transform: scaleY(0.4);
		-webkit-transform: scaleY(0.4);
	}
	20% {
		transform: scaleY(1.0);
		-webkit-transform: scaleY(1.0);
	}
}

              
            
!

JS

              
                var imgWidth = 300;
var imgHeight = 300;
var imgX = 0;
var imgY = 0;
var toX = 300;
var toY = 0;

function runImg(canvas, size, fn) {
	for (var y = 0; y < imgHeight; y++) {
		for (var x = 0; x < imgWidth; x++) {
			var i = x * 4 + y * imgWidth * 4;
			var matrix = getMatrix(x, y, size);
			fn(i, matrix);
		}
	}

	function getMatrix(cx, cy, size) {
		/**
         * will generate a 2d array of size x size given center x,
         * center y, size, image width & height
         */
		if (!size) {
			return;
		}

		var matrix = [];

		for (var i = 0, y = -(size - 1) / 2; i < size; i++, y++) {
			matrix[i] = [];

			for (var j = 0, x = -(size - 1) / 2; j < size; j++, x++) {
				matrix[i][j] = (cx + x) * 4 + (cy + y) * imgWidth * 4;
			}
		}

		return matrix;
	}
}

function getRGBA(start, imgData) {
	return {
		r: imgData.data[start],
		g: imgData.data[start + 1],
		b: imgData.data[start + 2],
		a: imgData.data[start + 3]
	};
}

function getPixel(i, imgData) {
	if (i < 0 || i > imgData.data.length - 4) {
		return {
			r: 255,
			g: 255,
			b: 255,
			a: 255
		};
	} else {
		return getRGBA(i, imgData);
	}
}

function setPixel(i, val, imgData) {
	imgData.data[i] = typeof val === 'number' ? val : val.r;
	imgData.data[i + 1] = typeof val === 'number' ? val : val.g;
	imgData.data[i + 2] = typeof val === 'number' ? val : val.b;
}

function calculateGray(pixel) {
	return ((0.3 * pixel.r) + (0.59 * pixel.g) + (0.11 * pixel.b));
}

function grayscale(canvas) {
	var ctx = canvas.getContext('2d');

	var imgDataCopy = ctx.getImageData(imgX, imgY, imgWidth, imgHeight);
	var grayLevel;

	runImg(canvas, null, function (current) {
		grayLevel = calculateGray(getPixel(current, imgDataCopy));
		setPixel(current, grayLevel, imgDataCopy);
	});

	ctx.putImageData(imgDataCopy, toX, toY);
}

function sumArr(arr) {
	var result = 0;

	arr.map(function(element, index) {
		result += (/^\s*function Array/.test(String(element.constructor))) ? sumArr(element) : element;
	});

	return result;
}

function generateKernel(sigma, size) {
	var kernel = [];

	/** Euler's number rounded of to 3 places */
	var E = 2.718;

	for (var y = -(size - 1) / 2, i = 0; i < size; y++, i++) {
		kernel[i] = [];

		for (var x = -(size - 1) / 2, j = 0; j < size; x++, j++) {
			/** create kernel round to 3 decimal places */
			kernel[i][j] = 1 / (2 * Math.PI * Math.pow(sigma, 2)) * Math.pow(E, -(Math.pow(Math.abs(x), 2) + Math.pow(Math.abs(y), 2)) / (2 * Math.pow(sigma, 2)));
		}
	}

	/** normalize the kernel to make its sum 1 */
	var normalize = 1 / sumArr(kernel);

	for (var k = 0; k < kernel.length; k++) {
		for (var l = 0; l < kernel[k].length; l++) {
			kernel[k][l] = Math.round(normalize * kernel[k][l] * 1000) / 1000;
		}
	}

	return kernel;
}

function gaussianBlur(canvas, sigma, size) {
	var ctx = canvas.getContext('2d');

	var imgDataCopy = ctx.getImageData(toX, toY, imgWidth, imgHeight);
	var kernel = generateKernel(sigma, size);

	runImg(canvas, size, function (current, neighbors) {
		var resultR = 0;
		var resultG = 0;
		var resultB = 0;
		var pixel;

		for (var i = 0; i < size; i++) {
			for (var j = 0; j < size; j++) {
				pixel = getPixel(neighbors[i][j], imgDataCopy);

				/** return the existing pixel value multiplied by the kernel */
				resultR += pixel.r * kernel[i][j];
				resultG += pixel.g * kernel[i][j];
				resultB += pixel.b * kernel[i][j];
			}
		}

		setPixel(current, {
			r: resultR,
			g: resultG,
			b: resultB
		}, imgDataCopy);
	});

	ctx.putImageData(imgDataCopy, toX, toY);
}

(function(exports) {
	var DIRECTIONS = [
		'n',
		'e',
		's',
		'w',
		'ne',
		'nw',
		'se',
		'sw'    
	];

	function Pixel(i, w, h, canvas) {
		this.index = i;
		this.width = w;
		this.height = h;
		this.neighbors = [];
		this.canvas = canvas;

		DIRECTIONS.map(function(d, idx) {
			this.neighbors.push(this[d]());
		}.bind(this));
	}

	/**
     * This object was created to simplify getting the
     * coordinates of any of the 8 neighboring pixels
     * _______________
     * | NW | N | NE |
     * |____|___|____|
     * | W  | C | E  |
     * |____|___|____|
     * | SW | S | SE |
     * |____|___|____|
     * given the index, width and height of matrix
    **/

	Pixel.prototype.n = function() {
		/**
         * pixels are simply arrays in canvas image data
         * where 1 pixel occupies 4 consecutive elements
         * equal to r-g-b-a
         */
		return (this.index - this.width * 4);
	};

	Pixel.prototype.e = function() {
		return (this.index + 4);
	};

	Pixel.prototype.s = function() {
		return (this.index + this.width * 4);
	};

	Pixel.prototype.w = function() {
		return (this.index - 4);
	};

	Pixel.prototype.ne = function() {
		return (this.index - this.width * 4 + 4);
	};

	Pixel.prototype.nw = function() {
		return (this.index - this.width * 4 - 4);
	};

	Pixel.prototype.se = function() {
		return (this.index + this.width * 4 + 4);
	};

	Pixel.prototype.sw = function() {
		return (this.index + this.width * 4 - 4);
	};

	Pixel.prototype.r = function() {
		return this.canvas[this.index];
	};

	Pixel.prototype.g = function() {
		return this.canvas[this.index + 1];
	};;

	Pixel.prototype.b = function() {
		return this.canvas[this.index + 2];
	};

	Pixel.prototype.a = function() {
		return this.canvas[this.index + 3];
	};

	Pixel.prototype.isBorder = function() {
		return (this.index - (this.width * 4)) < 0 ||
			(this.index % (this.width * 4)) === 0 ||
			(this.index % (this.width * 4)) === ((this.width * 4) - 4) ||
			(this.index + (this.width * 4)) > (this.width * this.height * 4);
	};

	exports.Pixel = Pixel;
}(window));

function roundDir(deg) {
	/** rounds degrees to 4 possible orientations: horizontal, vertical, and 2 diagonals */
	var deg = deg < 0 ? deg + 180 : deg;

	if ((deg >= 0 && deg <= 22.5) || (deg > 157.5 && deg <= 180)) {
		return 0;
	} else if (deg > 22.5 && deg <= 67.5) {
		return 45;
	} else if (deg > 67.5 && deg <= 112.5) {
		return 90;
	} else if (deg > 112.5 && deg <= 157.5) {
		return 135;
	}
};

function gradient(canvas, op) {
	var ctx = canvas.getContext('2d');

	var imgData = ctx.getImageData(toX, toY, imgWidth, imgHeight);
	var imgDataCopy = ctx.getImageData(toX, toY, imgWidth, imgHeight);

	var dirMap = [];
	var gradMap = [];

	var SOBEL_X_FILTER = [
		[-1, 0, 1],
		[-2, 0, 2],
		[-1, 0, 1]
	];

	var SOBEL_Y_FILTER = [
		[1, 2, 1],
		[0, 0, 0],
		[-1, -2, -1]
	];

	var ROBERTS_X_FILTER = [
		[1, 0],
		[0, -1]
	];

	var ROBERTS_Y_FILTER = [
		[0, 1],
		[-1, 0]
	];

	var PREWITT_X_FILTER = [
		[-1, 0, 1],
		[-1, 0, 1],
		[-1, 0, 1]
	];

	var PREWITT_Y_FILTER = [
		[-1, -1, -1],
		[0, 0, 0],
		[1, 1, 1]
	];

	var OPERATORS = {
		'sobel': {
			x: SOBEL_X_FILTER,
			y: SOBEL_Y_FILTER,
			len: SOBEL_X_FILTER.length
		},
		'roberts': {
			x: ROBERTS_X_FILTER,
			y: ROBERTS_Y_FILTER,
			len: ROBERTS_Y_FILTER.length
		},
		'prewitt': {
			x: PREWITT_X_FILTER,
			y: PREWITT_Y_FILTER,
			len: PREWITT_Y_FILTER.length
		}
	};

	runImg(canvas, 3, function (current, neighbors) {
		var edgeX = 0;
		var edgeY = 0;
		var pixel = new Pixel(current, imgDataCopy.width, imgDataCopy.height);

		if (!pixel.isBorder()) {
			for (var i = 0; i < OPERATORS[op].len; i++) {
				for (var j = 0; j < OPERATORS[op].len; j++) {
					edgeX += imgData.data[neighbors[i][j]] * OPERATORS[op]["x"][i][j];
					edgeY += imgData.data[neighbors[i][j]] * OPERATORS[op]["y"][i][j];
				}
			}
		}

		dirMap[current] = roundDir(Math.atan2(edgeY, edgeX) * (180 / Math.PI));
		gradMap[current] = Math.round(Math.sqrt(edgeX * edgeX + edgeY * edgeY));

		setPixel(current, gradMap[current], imgDataCopy);
	});

	ctx.putImageData(imgDataCopy, toX, toY);

	return {
		dirMap: dirMap,
		gradMap: gradMap
	};
}

function getPixelNeighbors(dir) {
	var degrees = {
		0: [
			{
				x: 1,
				y: 2
			},
			{
				x: 1,
				y: 0
			}
		],
		45: [
			{
				x: 0,
				y: 2
			},
			{
				x: 2,
				y: 0
			}
		],
		90: [
			{
				x: 0,
				y: 1
			},
			{
				x: 2,
				y: 1
			}
		],
		135: [
			{
				x: 0,
				y: 0
			},
			{
				x: 2,
				y: 2
			}
		]
	};

	return degrees[dir];
}

function nonMaximumSuppress(canvas, dirMap, gradMap) {
	var ctx = canvas.getContext('2d');

	var imgDataCopy = ctx.getImageData(toX, toY, imgWidth, imgHeight);

	runImg(canvas, 3, function(current, neighbors) {
		var pixNeighbors = getPixelNeighbors(dirMap[current]);
		if (typeof pixNeighbors === 'undefined') {
			return;
		}

		/** pixel neighbors to compare */
		var pix1 = gradMap[neighbors[pixNeighbors[0].x][pixNeighbors[0].y]];
		var pix2 = gradMap[neighbors[pixNeighbors[1].x][pixNeighbors[1].y]];

		if (pix1 > gradMap[current] ||
			pix2 > gradMap[current] ||
			(pix2 === gradMap[current] &&
			 pix1 < gradMap[current])) {
			setPixel(current, 0, imgDataCopy);
		}
	});

	ctx.putImageData(imgDataCopy, toX, toY);
}

function createHistogram(canvas) {
	var histogram = {
		g: []
	};

	var size = 256;
	var total = 0;

	var ctx = canvas.getContext('2d');

	var imgData = ctx.getImageData(0, 0, canvas.width, canvas.height);

	while (size--) {
		histogram.g[size] = 0;
	}

	runImg(canvas, null, function(i) {
		histogram.g[imgData.data[i]]++;
		total++;
	});

	histogram.length = total;

	return histogram;
};

function calcBetweenClassVariance(weight1, mean1, weight2, mean2) {
	return weight1 * weight2 * (mean1 - mean2) * (mean1 - mean2);
};

function calcWeight(histogram, s, e) {
	var total = histogram.reduce(function(i, j) {
		return i + j;
	}, 0);

	var partHist = (s === e) ? [histogram[s]] : histogram.slice(s, e);
	var part = partHist.reduce(function(i, j) {
		return i + j;
	}, 0);

	return parseFloat(part, 10) / total;
};

function calcMean(histogram, s, e) {
	var partHist = (s === e) ? [histogram[s]] : histogram.slice(s, e);

	var val = 0;
	var total = 0;

	partHist.forEach(function(el, i) {
		val += ((s + i) * el);
		total += el;
	});

	return parseFloat(val, 10) / total;
};

function fastOtsu(canvas) {
	var histogram = createHistogram(canvas);
	var start = 0;
	var end = histogram.g.length - 1;

	var leftWeight;
	var rightWeight;
	var leftMean;
	var rightMean;

	var betweenClassVariances = [];
	var max = -Infinity;
	var threshold;

	histogram.g.forEach(function(el, i) {
		leftWeight = calcWeight(histogram.g, start, i);
		rightWeight = calcWeight(histogram.g, i, end + 1);
		leftMean = calcMean(histogram.g, start, i);
		rightMean = calcMean(histogram.g, i, end + 1);
		betweenClassVariances[i] = calcBetweenClassVariance(leftWeight, leftMean, rightWeight, rightMean);

		if (betweenClassVariances[i] > max) {
			max = betweenClassVariances[i];
			threshold = i;
		}
	});

	return threshold;
};

function getEdgeNeighbors(i, imgData, threshold, includedEdges) {
	var neighbors = [];
	var pixel = new Pixel(i, imgData.width, imgData.height);

	for (var j = 0; j < pixel.neighbors.length; j++) {
		if (imgData.data[pixel.neighbors[j]] >= threshold && (includedEdges === undefined || includedEdges.indexOf(pixel.neighbors[j]) === -1)) {
			neighbors.push(pixel.neighbors[j]);
		}
	}

	return neighbors;
}

function _traverseEdge(current, imgData, threshold, traversed) { 
	/**
     * traverses the current pixel until a length has been reached 
     * initialize the group from the current pixel's perspective
     */
	var group = [current];

	/** pass the traversed group to the getEdgeNeighbors so that it will not include those anymore */
	var neighbors = getEdgeNeighbors(current, imgData, threshold, traversed);

	for (var i = 0; i < neighbors.length; i++) {
		/** recursively get the other edges connected */
		group = group.concat(_traverseEdge(neighbors[i], imgData, threshold, traversed.concat(group)));
	}

	/** if the pixel group is not above max length, it will return the pixels included in that small pixel group */
	return group;
}

function hysteresis(canvas) {
	var ctx = canvas.getContext('2d');

	var imgDataCopy = ctx.getImageData(toX, toY, imgWidth, imgHeight);

	/** where real edges will be stored with the 1st pass */
	var realEdges = [];

	/** high threshold value */
	var t1 = fastOtsu(canvas);

	/** low threshold value */
	var t2 = t1 / 2;

	/** first pass */
	runImg(canvas, null, function(current) {
		if (imgDataCopy.data[current] > t1 && realEdges[current] === undefined) {
			/** accept as a definite edge */
			var group = _traverseEdge(current, imgDataCopy, t2, []);
			for (var i = 0; i < group.length; i++) {
				realEdges[group[i]] = true;
			}
		}
	});

	/** second pass */
	runImg(canvas, null, function(current) {
		if (realEdges[current] === undefined) {
			setPixel(current, 0, imgDataCopy);
		} else {
			setPixel(current, 255, imgDataCopy);
		}
	});

	// for (var i = 0; i < imgDataCopy.data.length; i += 4) {
	// 	if (imgDataCopy.data[i] === 0 &&
	// 	   imgDataCopy.data[i + 1] === 0 &&
	// 	   imgDataCopy.data[i + 2] === 0) {
	// 		imgDataCopy.data[i + 3] = 0
	// 	} else {
	// 		imgDataCopy.data[i] = 0;
	// 		imgDataCopy.data[i + 1] = 0;
	// 		imgDataCopy.data[i + 2] = 0;
	// 	}
	// }

	ctx.putImageData(imgDataCopy, toX, toY);
}

(function () {
	var canvas = document.getElementById('canvasObj');
	var ctx = canvas.getContext('2d');

	var img = document.createElement('img');

	/** to avoid error of getImageData from a cross-domain data */
	img.crossOrigin = "Anonymous";

	/** draw when onload */
	img.addEventListener('load', function () {
		ctx.drawImage(img, imgX, imgY, imgWidth, imgHeight);

		document.querySelectorAll('.button')[0].addEventListener('click', function () {
			document.querySelectorAll('.loading')[0].style.opacity = '1'
			setTimeout(function (){
				grayscale(canvas);
				gaussianBlur(canvas, 5, 1);
				var maps = gradient(canvas, 'sobel');
				nonMaximumSuppress(canvas, maps.dirMap, maps.gradMap);
				hysteresis(canvas);
				document.querySelectorAll('.loading')[0].style.opacity = '0';
			}, 1000);
		});
	});

	img.src = 'https://raw.githubusercontent.com/aleen42/https-resources/master/800630113213297966.jpg';
})();

              
            
!
999px

Console