Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URL's added here will be added as <link>s in order, and before the CSS in the editor. You can use the CSS from another Pen by using it's URL and the proper URL extention.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Save Automatically?

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                <canvas id="c"></canvas>

<script id="fragment-shader" type="x-shader/x-fragment">
  #ifdef GL_ES
  precision highp float;
  #endif

  void main(void) {
    gl_FragColor = vec4(1, 0.2, 0.2, 1.0);
  }
</script>

<script id="vertex-shader" type="x-shader/x-vertex">

  attribute vec2 vertexPosition;
  uniform vec2 u_resolution;

  void main(void) {

    vec2 zeroToOne = vertexPosition / u_resolution;
    vec2 zeroToTwo = zeroToOne * 2.0;
    vec2 clipSpace = zeroToTwo - 1.0;

    gl_Position = vec4(clipSpace * vec2(1.0, -1.0), 0.0, 1.0);

  }
</script>

              
            
!

CSS

              
                
* {
	margin: 0;
	padding: 0;
	overflow: hidden;
}

html, body {
  background: black;
  width: 100%;
  height: 100%;
	overflow: hidden;
}

canvas {
	display: block;
  position: absolute;
  top: 0;
  right: 0;
  bottom: 0;
  left: 0;
  margin: auto;
}
              
            
!

JS

              
                
/*
 * A fast javascript implementation of simplex noise by Jonas Wagner
 *
 * Based on a speed-improved simplex noise algorithm for 2D, 3D and 4D in Java.
 * Which is based on example code by Stefan Gustavson (stegu@itn.liu.se).
 * With Optimisations by Peter Eastman (peastman@drizzle.stanford.edu).
 * Better rank ordering method by Stefan Gustavson in 2012.
 *
 *
 * Copyright (C) 2012 Jonas Wagner
 *
 * Permission is hereby granted, free of charge, to any person obtaining
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
 * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
 * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
 * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 *
 */
(function () {

var F2 = 0.5 * (Math.sqrt(3.0) - 1.0),
    G2 = (3.0 - Math.sqrt(3.0)) / 6.0,
    F3 = 1.0 / 3.0,
    G3 = 1.0 / 6.0,
    F4 = (Math.sqrt(5.0) - 1.0) / 4.0,
    G4 = (5.0 - Math.sqrt(5.0)) / 20.0;


function SimplexNoise(random) {
    if (!random) random = Math.random;
    this.p = new Uint8Array(256);
    this.perm = new Uint8Array(512);
    this.permMod12 = new Uint8Array(512);
    for (var i = 0; i < 256; i++) {
        this.p[i] = random() * 256;
    }
    for (i = 0; i < 512; i++) {
        this.perm[i] = this.p[i & 255];
        this.permMod12[i] = this.perm[i] % 12;
    }

}

SimplexNoise.prototype = {
    grad3: new Float32Array([1, 1, 0,
                            - 1, 1, 0,
                            1, - 1, 0,

                            - 1, - 1, 0,
                            1, 0, 1,
                            - 1, 0, 1,

                            1, 0, - 1,
                            - 1, 0, - 1,
                            0, 1, 1,

                            0, - 1, 1,
                            0, 1, - 1,
                            0, - 1, - 1]),
    grad4: new Float32Array([0, 1, 1, 1, 0, 1, 1, - 1, 0, 1, - 1, 1, 0, 1, - 1, - 1,
                            0, - 1, 1, 1, 0, - 1, 1, - 1, 0, - 1, - 1, 1, 0, - 1, - 1, - 1,
                            1, 0, 1, 1, 1, 0, 1, - 1, 1, 0, - 1, 1, 1, 0, - 1, - 1,
                            - 1, 0, 1, 1, - 1, 0, 1, - 1, - 1, 0, - 1, 1, - 1, 0, - 1, - 1,
                            1, 1, 0, 1, 1, 1, 0, - 1, 1, - 1, 0, 1, 1, - 1, 0, - 1,
                            - 1, 1, 0, 1, - 1, 1, 0, - 1, - 1, - 1, 0, 1, - 1, - 1, 0, - 1,
                            1, 1, 1, 0, 1, 1, - 1, 0, 1, - 1, 1, 0, 1, - 1, - 1, 0,
                            - 1, 1, 1, 0, - 1, 1, - 1, 0, - 1, - 1, 1, 0, - 1, - 1, - 1, 0]),
    noise2D: function (xin, yin) {
        var permMod12 = this.permMod12,
            perm = this.perm,
            grad3 = this.grad3;
        var n0=0, n1=0, n2=0; // Noise contributions from the three corners
        // Skew the input space to determine which simplex cell we're in
        var s = (xin + yin) * F2; // Hairy factor for 2D
        var i = Math.floor(xin + s);
        var j = Math.floor(yin + s);
        var t = (i + j) * G2;
        var X0 = i - t; // Unskew the cell origin back to (x,y) space
        var Y0 = j - t;
        var x0 = xin - X0; // The x,y distances from the cell origin
        var y0 = yin - Y0;
        // For the 2D case, the simplex shape is an equilateral triangle.
        // Determine which simplex we are in.
        var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
        if (x0 > y0) {
            i1 = 1;
            j1 = 0;
        } // lower triangle, XY order: (0,0)->(1,0)->(1,1)
        else {
            i1 = 0;
            j1 = 1;
        } // upper triangle, YX order: (0,0)->(0,1)->(1,1)
        // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
        // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
        // c = (3-sqrt(3))/6
        var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
        var y1 = y0 - j1 + G2;
        var x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
        var y2 = y0 - 1.0 + 2.0 * G2;
        // Work out the hashed gradient indices of the three simplex corners
        var ii = i & 255;
        var jj = j & 255;
        // Calculate the contribution from the three corners
        var t0 = 0.5 - x0 * x0 - y0 * y0;
        if (t0 >= 0) {
            var gi0 = permMod12[ii + perm[jj]] * 3;
            t0 *= t0;
            n0 = t0 * t0 * (grad3[gi0] * x0 + grad3[gi0 + 1] * y0); // (x,y) of grad3 used for 2D gradient
        }
        var t1 = 0.5 - x1 * x1 - y1 * y1;
        if (t1 >= 0) {
            var gi1 = permMod12[ii + i1 + perm[jj + j1]] * 3;
            t1 *= t1;
            n1 = t1 * t1 * (grad3[gi1] * x1 + grad3[gi1 + 1] * y1);
        }
        var t2 = 0.5 - x2 * x2 - y2 * y2;
        if (t2 >= 0) {
            var gi2 = permMod12[ii + 1 + perm[jj + 1]] * 3;
            t2 *= t2;
            n2 = t2 * t2 * (grad3[gi2] * x2 + grad3[gi2 + 1] * y2);
        }
        // Add contributions from each corner to get the final noise value.
        // The result is scaled to return values in the interval [-1,1].
        return 70.0 * (n0 + n1 + n2);
    },
    // 3D simplex noise
    noise3D: function (xin, yin, zin) {
        var permMod12 = this.permMod12,
            perm = this.perm,
            grad3 = this.grad3;
        var n0, n1, n2, n3; // Noise contributions from the four corners
        // Skew the input space to determine which simplex cell we're in
        var s = (xin + yin + zin) * F3; // Very nice and simple skew factor for 3D
        var i = Math.floor(xin + s);
        var j = Math.floor(yin + s);
        var k = Math.floor(zin + s);
        var t = (i + j + k) * G3;
        var X0 = i - t; // Unskew the cell origin back to (x,y,z) space
        var Y0 = j - t;
        var Z0 = k - t;
        var x0 = xin - X0; // The x,y,z distances from the cell origin
        var y0 = yin - Y0;
        var z0 = zin - Z0;
        // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
        // Determine which simplex we are in.
        var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
        var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
        if (x0 >= y0) {
            if (y0 >= z0) {
                i1 = 1;
                j1 = 0;
                k1 = 0;
                i2 = 1;
                j2 = 1;
                k2 = 0;
            } // X Y Z order
            else if (x0 >= z0) {
                i1 = 1;
                j1 = 0;
                k1 = 0;
                i2 = 1;
                j2 = 0;
                k2 = 1;
            } // X Z Y order
            else {
                i1 = 0;
                j1 = 0;
                k1 = 1;
                i2 = 1;
                j2 = 0;
                k2 = 1;
            } // Z X Y order
        }
        else { // x0<y0
            if (y0 < z0) {
                i1 = 0;
                j1 = 0;
                k1 = 1;
                i2 = 0;
                j2 = 1;
                k2 = 1;
            } // Z Y X order
            else if (x0 < z0) {
                i1 = 0;
                j1 = 1;
                k1 = 0;
                i2 = 0;
                j2 = 1;
                k2 = 1;
            } // Y Z X order
            else {
                i1 = 0;
                j1 = 1;
                k1 = 0;
                i2 = 1;
                j2 = 1;
                k2 = 0;
            } // Y X Z order
        }
        // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
        // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
        // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
        // c = 1/6.
        var x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
        var y1 = y0 - j1 + G3;
        var z1 = z0 - k1 + G3;
        var x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords
        var y2 = y0 - j2 + 2.0 * G3;
        var z2 = z0 - k2 + 2.0 * G3;
        var x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords
        var y3 = y0 - 1.0 + 3.0 * G3;
        var z3 = z0 - 1.0 + 3.0 * G3;
        // Work out the hashed gradient indices of the four simplex corners
        var ii = i & 255;
        var jj = j & 255;
        var kk = k & 255;
        // Calculate the contribution from the four corners
        var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0;
        if (t0 < 0) n0 = 0.0;
        else {
            var gi0 = permMod12[ii + perm[jj + perm[kk]]] * 3;
            t0 *= t0;
            n0 = t0 * t0 * (grad3[gi0] * x0 + grad3[gi0 + 1] * y0 + grad3[gi0 + 2] * z0);
        }
        var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1;
        if (t1 < 0) n1 = 0.0;
        else {
            var gi1 = permMod12[ii + i1 + perm[jj + j1 + perm[kk + k1]]] * 3;
            t1 *= t1;
            n1 = t1 * t1 * (grad3[gi1] * x1 + grad3[gi1 + 1] * y1 + grad3[gi1 + 2] * z1);
        }
        var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2;
        if (t2 < 0) n2 = 0.0;
        else {
            var gi2 = permMod12[ii + i2 + perm[jj + j2 + perm[kk + k2]]] * 3;
            t2 *= t2;
            n2 = t2 * t2 * (grad3[gi2] * x2 + grad3[gi2 + 1] * y2 + grad3[gi2 + 2] * z2);
        }
        var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3;
        if (t3 < 0) n3 = 0.0;
        else {
            var gi3 = permMod12[ii + 1 + perm[jj + 1 + perm[kk + 1]]] * 3;
            t3 *= t3;
            n3 = t3 * t3 * (grad3[gi3] * x3 + grad3[gi3 + 1] * y3 + grad3[gi3 + 2] * z3);
        }
        // Add contributions from each corner to get the final noise value.
        // The result is scaled to stay just inside [-1,1]
        return 32.0 * (n0 + n1 + n2 + n3);
    },
    // 4D simplex noise, better simplex rank ordering method 2012-03-09
    noise4D: function (x, y, z, w) {
        var permMod12 = this.permMod12,
            perm = this.perm,
            grad4 = this.grad4;

        var n0, n1, n2, n3, n4; // Noise contributions from the five corners
        // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
        var s = (x + y + z + w) * F4; // Factor for 4D skewing
        var i = Math.floor(x + s);
        var j = Math.floor(y + s);
        var k = Math.floor(z + s);
        var l = Math.floor(w + s);
        var t = (i + j + k + l) * G4; // Factor for 4D unskewing
        var X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
        var Y0 = j - t;
        var Z0 = k - t;
        var W0 = l - t;
        var x0 = x - X0; // The x,y,z,w distances from the cell origin
        var y0 = y - Y0;
        var z0 = z - Z0;
        var w0 = w - W0;
        // For the 4D case, the simplex is a 4D shape I won't even try to describe.
        // To find out which of the 24 possible simplices we're in, we need to
        // determine the magnitude ordering of x0, y0, z0 and w0.
        // Six pair-wise comparisons are performed between each possible pair
        // of the four coordinates, and the results are used to rank the numbers.
        var rankx = 0;
        var ranky = 0;
        var rankz = 0;
        var rankw = 0;
        if (x0 > y0) rankx++;
        else ranky++;
        if (x0 > z0) rankx++;
        else rankz++;
        if (x0 > w0) rankx++;
        else rankw++;
        if (y0 > z0) ranky++;
        else rankz++;
        if (y0 > w0) ranky++;
        else rankw++;
        if (z0 > w0) rankz++;
        else rankw++;
        var i1, j1, k1, l1; // The integer offsets for the second simplex corner
        var i2, j2, k2, l2; // The integer offsets for the third simplex corner
        var i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
        // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
        // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
        // impossible. Only the 24 indices which have non-zero entries make any sense.
        // We use a thresholding to set the coordinates in turn from the largest magnitude.
        // Rank 3 denotes the largest coordinate.
        i1 = rankx >= 3 ? 1 : 0;
        j1 = ranky >= 3 ? 1 : 0;
        k1 = rankz >= 3 ? 1 : 0;
        l1 = rankw >= 3 ? 1 : 0;
        // Rank 2 denotes the second largest coordinate.
        i2 = rankx >= 2 ? 1 : 0;
        j2 = ranky >= 2 ? 1 : 0;
        k2 = rankz >= 2 ? 1 : 0;
        l2 = rankw >= 2 ? 1 : 0;
        // Rank 1 denotes the second smallest coordinate.
        i3 = rankx >= 1 ? 1 : 0;
        j3 = ranky >= 1 ? 1 : 0;
        k3 = rankz >= 1 ? 1 : 0;
        l3 = rankw >= 1 ? 1 : 0;
        // The fifth corner has all coordinate offsets = 1, so no need to compute that.
        var x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
        var y1 = y0 - j1 + G4;
        var z1 = z0 - k1 + G4;
        var w1 = w0 - l1 + G4;
        var x2 = x0 - i2 + 2.0 * G4; // Offsets for third corner in (x,y,z,w) coords
        var y2 = y0 - j2 + 2.0 * G4;
        var z2 = z0 - k2 + 2.0 * G4;
        var w2 = w0 - l2 + 2.0 * G4;
        var x3 = x0 - i3 + 3.0 * G4; // Offsets for fourth corner in (x,y,z,w) coords
        var y3 = y0 - j3 + 3.0 * G4;
        var z3 = z0 - k3 + 3.0 * G4;
        var w3 = w0 - l3 + 3.0 * G4;
        var x4 = x0 - 1.0 + 4.0 * G4; // Offsets for last corner in (x,y,z,w) coords
        var y4 = y0 - 1.0 + 4.0 * G4;
        var z4 = z0 - 1.0 + 4.0 * G4;
        var w4 = w0 - 1.0 + 4.0 * G4;
        // Work out the hashed gradient indices of the five simplex corners
        var ii = i & 255;
        var jj = j & 255;
        var kk = k & 255;
        var ll = l & 255;
        // Calculate the contribution from the five corners
        var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;
        if (t0 < 0) n0 = 0.0;
        else {
            var gi0 = (perm[ii + perm[jj + perm[kk + perm[ll]]]] % 32) * 4;
            t0 *= t0;
            n0 = t0 * t0 * (grad4[gi0] * x0 + grad4[gi0 + 1] * y0 + grad4[gi0 + 2] * z0 + grad4[gi0 + 3] * w0);
        }
        var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;
        if (t1 < 0) n1 = 0.0;
        else {
            var gi1 = (perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]]] % 32) * 4;
            t1 *= t1;
            n1 = t1 * t1 * (grad4[gi1] * x1 + grad4[gi1 + 1] * y1 + grad4[gi1 + 2] * z1 + grad4[gi1 + 3] * w1);
        }
        var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;
        if (t2 < 0) n2 = 0.0;
        else {
            var gi2 = (perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]]] % 32) * 4;
            t2 *= t2;
            n2 = t2 * t2 * (grad4[gi2] * x2 + grad4[gi2 + 1] * y2 + grad4[gi2 + 2] * z2 + grad4[gi2 + 3] * w2);
        }
        var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;
        if (t3 < 0) n3 = 0.0;
        else {
            var gi3 = (perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]]] % 32) * 4;
            t3 *= t3;
            n3 = t3 * t3 * (grad4[gi3] * x3 + grad4[gi3 + 1] * y3 + grad4[gi3 + 2] * z3 + grad4[gi3 + 3] * w3);
        }
        var t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;
        if (t4 < 0) n4 = 0.0;
        else {
            var gi4 = (perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] % 32) * 4;
            t4 *= t4;
            n4 = t4 * t4 * (grad4[gi4] * x4 + grad4[gi4 + 1] * y4 + grad4[gi4 + 2] * z4 + grad4[gi4 + 3] * w4);
        }
        // Sum up and scale the result to cover the range [-1,1]
        return 27.0 * (n0 + n1 + n2 + n3 + n4);
    }


};

// amd
if (typeof define !== 'undefined' && define.amd) define(function(){return SimplexNoise;});
//common js
if (typeof exports !== 'undefined') exports.SimplexNoise = SimplexNoise;
// browser
else if (typeof navigator !== 'undefined') this.SimplexNoise = SimplexNoise;
// nodejs
if (typeof module !== 'undefined') {
    module.exports = SimplexNoise;
}

})();


(function() {
var image,
    canvas,
    rect,
    gl,
    m = [0, 0],
    vertices = [],
    velocities = [],
    particles = 10000,
    time = 0,
    iW, iH;

var simplex = new SimplexNoise();

var resolutionLocation,
    vertexPosAttribLocation;

window.onload = start;
window.onresize = resize;
window.onmousemove = function(e) { m[0] = e.pageX; m[1] = e.pageY };

function resize() {

  iW = canvas.width = window.innerWidth,
  iH = canvas.height = window.innerHeight;

  rect = canvas.getBoundingClientRect();

  if (resolutionLocation) gl.uniform2f(resolutionLocation, canvas.width, canvas.height);

  gl.viewport(0, 0, canvas.width, canvas.height);

};

function start() {

  image = document.getElementById("image");
  canvas = document.getElementById("c");
  gl = canvas.getContext("experimental-webgl");

  resize();
  
  m[0] = canvas.width / 2;
  m[1] = canvas.height / 2;

  main();

}

function main() {

  var vshader = load_shader("vertex-shader", gl.VERTEX_SHADER);
  var fshader = load_shader("fragment-shader", gl.FRAGMENT_SHADER);

  gl.program = gl.createProgram();
  gl.attachShader(gl.program, vshader);
  gl.attachShader(gl.program, fshader);
  gl.linkProgram(gl.program);
  gl.useProgram(gl.program);

  gl.enable(gl.BLEND);
  gl.disable(gl.DEPTH_TEST);
  gl.blendFunc(gl.SRC_ALPHA, gl.ONE);

  vertexPosAttribLocation = gl.getAttribLocation(gl.program, "vertexPosition");
  resolutionLocation = gl.getUniformLocation(gl.program, "u_resolution");

  gl.uniform2f(resolutionLocation, canvas.width, canvas.height);

  var buffer = gl.createBuffer();

  gl.bindBuffer(gl.ARRAY_BUFFER, buffer);

  gl.enableVertexAttribArray(vertexPosAttribLocation);
  gl.vertexAttribPointer(vertexPosAttribLocation, 2, gl.FLOAT, false, 0, 0);

  setup();

  loop();

}

function load_shader(el, type) {

  var script = document.getElementById(el);
  var shader = gl.createShader(type);

  gl.shaderSource(shader, script.text);
  gl.compileShader(shader);

  return shader;

}

function setup() {
  
  for (i = 0; i < particles; i++) {

    var x = canvas.width / 2,
        y = canvas.height / 2;

    vertices.push(x, y, x, y);

    velocities.push(Math.random() * 6 - 3, Math.random() * 6 - 3);
  }

  vertices = new Float32Array(vertices);
  velocities = new Float32Array(velocities);

}

function calc_particles() {

  for (i = 0; i < particles; i++) {

    bp = i * 4;

    vertices[bp] = vertices[bp + 2];
    vertices[bp + 1] = vertices[bp + 3];

    var s = simplex.noise3D(vertices[bp] / 100, vertices[bp + 1] / 100, time / 1000);

    vertices[bp + 2] += velocities[bp] + s;
    vertices[bp + 3] += velocities[bp + 1] + s;

    if (vertices[bp] < 0 || vertices[bp] > canvas.width || vertices[bp + 1] < 0 || vertices[bp + 1] > canvas.height) {
      vertices[bp] = vertices[bp + 2] = m[0];
      vertices[bp + 1] = vertices[bp + 3] = m[1];
    }

  }

}

function loop(){

  calc_particles();

  gl.lineWidth(2);
  gl.bufferData(gl.ARRAY_BUFFER, vertices, gl.DYNAMIC_DRAW);
  gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
  gl.drawArrays(gl.LINES, 0, particles * 2);
  gl.flush();

  time++;

  requestAnimationFrame(loop);

}

})();


              
            
!
999px

Console