HTML preprocessors can make writing HTML more powerful or convenient. For instance, Markdown is designed to be easier to write and read for text documents and you could write a loop in Pug.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. So you don't have access to higher-up elements like the <html>
tag. If you want to add classes there that can affect the whole document, this is the place to do it.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. If you need things in the <head>
of the document, put that code here.
The resource you are linking to is using the 'http' protocol, which may not work when the browser is using https.
CSS preprocessors help make authoring CSS easier. All of them offer things like variables and mixins to provide convenient abstractions.
It's a common practice to apply CSS to a page that styles elements such that they are consistent across all browsers. We offer two of the most popular choices: normalize.css and a reset. Or, choose Neither and nothing will be applied.
To get the best cross-browser support, it is a common practice to apply vendor prefixes to CSS properties and values that require them to work. For instance -webkit-
or -moz-
.
We offer two popular choices: Autoprefixer (which processes your CSS server-side) and -prefix-free (which applies prefixes via a script, client-side).
Any URLs added here will be added as <link>
s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.
You can apply CSS to your Pen from any stylesheet on the web. Just put a URL to it here and we'll apply it, in the order you have them, before the CSS in the Pen itself.
You can also link to another Pen here (use the .css
URL Extension) and we'll pull the CSS from that Pen and include it. If it's using a matching preprocessor, use the appropriate URL Extension and we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
JavaScript preprocessors can help make authoring JavaScript easier and more convenient.
Babel includes JSX processing.
Any URL's added here will be added as <script>
s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.
You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.
If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
Search for and use JavaScript packages from npm here. By selecting a package, an import
statement will be added to the top of the JavaScript editor for this package.
Using packages here is powered by esm.sh, which makes packages from npm not only available on a CDN, but prepares them for native JavaScript ESM usage.
All packages are different, so refer to their docs for how they work.
If you're using React / ReactDOM, make sure to turn on Babel for the JSX processing.
If active, Pens will autosave every 30 seconds after being saved once.
If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.
If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.
Visit your global Editor Settings.
<script src="https://rawgit.com/mdn/webgl-examples/gh-pages/tutorial/gl-matrix.js"></script>
<script src="https://rawgit.com/Pomax/bezierjs/gh-pages/bezier.js"></script>
<canvas id="glcanvas" height=900 width=900></canvas>
class Cylinder {
static initBuffers(gl) {
var positionBuffer;
var textureCoordBuffer;
var indexBuffer;
var vertexPositionData = [];
var textureCoordData = [];
var indexData = [];
const r = 1;
const n = 360;
for (let i = 0; i < n; i++) {
const x = r * Math.cos(i * 2 * Math.PI / n);
const z = r * Math.sin(i * 2 * Math.PI / n);
vertexPositionData.push(x);
vertexPositionData.push(r);
vertexPositionData.push(z);
vertexPositionData.push(x);
vertexPositionData.push(-r);
vertexPositionData.push(z);
const u = i/n;
const vTop = 1;
const vBottom = 0;
textureCoordData.push(u);
textureCoordData.push(vTop);
textureCoordData.push(u);
textureCoordData.push(vBottom);
}
for (let i = 0; i < 2*n; i+=2) {
const first = i;
const second = i + 1;
const third = (i + 2) % (2*n);
const fourth = (i + 3) % (2*n);
indexData.push(first);
indexData.push(second);
indexData.push(third);
indexData.push(second);
indexData.push(third);
indexData.push(fourth);
}
textureCoordBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, textureCoordBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(textureCoordData), gl.STATIC_DRAW);
textureCoordBuffer.itemSize = 2;
textureCoordBuffer.numItems = textureCoordData.length / 2;
positionBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, positionBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertexPositionData), gl.STATIC_DRAW);
positionBuffer.itemSize = 3;
positionBuffer.numItems = vertexPositionData.length / 3;
indexBuffer = gl.createBuffer();
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer);
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint16Array(indexData), gl.STATIC_DRAW);
indexBuffer.itemSize = 1;
indexBuffer.numItems = indexData.length;
return {
position: positionBuffer,
textureCoord: textureCoordBuffer,
indices: indexBuffer,
};
}
static drawScene(gl, programInfo, buffers, texture, deltaTime, projectionMatrix, modelViewMatrix) {
// Tell WebGL how to pull out the positions from the position
// buffer into the vertexPosition attribute
{
const type = gl.FLOAT;
const normalize = false;
const stride = 0;
const offset = 0;
gl.bindBuffer(gl.ARRAY_BUFFER, buffers.position);
gl.vertexAttribPointer(
programInfo.attribLocations.vertexPosition,
buffers.position.itemSize,
type,
normalize,
stride,
offset);
gl.enableVertexAttribArray(
programInfo.attribLocations.vertexPosition);
}
// Tell WebGL how to pull out the texture coordinates from
// the texture coordinate buffer into the textureCoord attribute.
{
const type = gl.FLOAT;
const normalize = false;
const stride = 0;
const offset = 0;
gl.bindBuffer(gl.ARRAY_BUFFER, buffers.textureCoord);
gl.vertexAttribPointer(
programInfo.attribLocations.textureCoord,
buffers.textureCoord.itemSize,
type,
normalize,
stride,
offset);
gl.enableVertexAttribArray(
programInfo.attribLocations.textureCoord);
}
// Tell WebGL which indices to use to index the vertices
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, buffers.indices);
// Tell WebGL to use our program when drawing
gl.useProgram(programInfo.program);
// Set the shader uniforms
gl.uniformMatrix4fv(
programInfo.uniformLocations.projectionMatrix,
false,
projectionMatrix);
gl.uniformMatrix4fv(
programInfo.uniformLocations.modelViewMatrix,
false,
modelViewMatrix);
// Specify the texture to map onto the faces.
// Tell WebGL we want to affect texture unit 0
gl.activeTexture(gl.TEXTURE0);
// Bind the texture to texture unit 0
gl.bindTexture(gl.TEXTURE_2D, texture);
// Tell the shader we bound the texture to texture unit 0
gl.uniform1i(programInfo.uniformLocations.uSampler, 0);
{
const type = gl.UNSIGNED_SHORT;
const offset = 0;
gl.drawElements(gl.TRIANGLES, buffers.indices.numItems, type, offset);
}
}
}
class Sphere {
static initBuffers(gl) {
var positionBuffer;
var normalBuffer;
var textureCoordBuffer;
var indexBuffer;
var latitudeBands = 30;
var longitudeBands = 30;
var radius = 2;
var vertexPositionData = [];
var normalData = [];
var textureCoordData = [];
for (var latNumber = 0; latNumber <= latitudeBands; latNumber++) {
var theta = latNumber * Math.PI / latitudeBands;
var sinTheta = Math.sin(theta);
var cosTheta = Math.cos(theta);
for (var longNumber = 0; longNumber <= longitudeBands; longNumber++) {
var phi = longNumber * 2 * Math.PI / longitudeBands;
var sinPhi = Math.sin(phi);
var cosPhi = Math.cos(phi);
var x = cosPhi * sinTheta;
var y = cosTheta;
var z = sinPhi * sinTheta;
var u = 1 - (longNumber / longitudeBands);
var v = 1 - (latNumber / latitudeBands);
normalData.push(x);
normalData.push(y);
normalData.push(z);
textureCoordData.push(u);
textureCoordData.push(v);
vertexPositionData.push(radius * x);
vertexPositionData.push(radius * y);
vertexPositionData.push(radius * z);
}
}
var indexData = [];
for (var latNumber = 0; latNumber < latitudeBands; latNumber++) {
for (var longNumber = 0; longNumber < longitudeBands; longNumber++) {
var first = (latNumber * (longitudeBands + 1)) + longNumber;
var second = first + longitudeBands + 1;
indexData.push(first);
indexData.push(second);
indexData.push(first + 1);
indexData.push(second);
indexData.push(second + 1);
indexData.push(first + 1);
}
}
normalBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, normalBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(normalData), gl.STATIC_DRAW);
normalBuffer.itemSize = 3;
normalBuffer.numItems = normalData.length / 3;
textureCoordBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, textureCoordBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(textureCoordData), gl.STATIC_DRAW);
textureCoordBuffer.itemSize = 2;
textureCoordBuffer.numItems = textureCoordData.length / 2;
positionBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, positionBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertexPositionData), gl.STATIC_DRAW);
positionBuffer.itemSize = 3;
positionBuffer.numItems = vertexPositionData.length / 3;
indexBuffer = gl.createBuffer();
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer);
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint16Array(indexData), gl.STATIC_DRAW);
indexBuffer.itemSize = 1;
indexBuffer.numItems = indexData.length;
return {
position: positionBuffer,
textureCoord: textureCoordBuffer,
indices: indexBuffer,
};
}
static drawScene(gl, programInfo, buffers, texture, deltaTime, projectionMatrix, modelViewMatrix) {
// Tell WebGL how to pull out the positions from the position
// buffer into the vertexPosition attribute
{
const type = gl.FLOAT;
const normalize = false;
const stride = 0;
const offset = 0;
gl.bindBuffer(gl.ARRAY_BUFFER, buffers.position);
gl.vertexAttribPointer(
programInfo.attribLocations.vertexPosition,
buffers.position.itemSize,
type,
normalize,
stride,
offset);
gl.enableVertexAttribArray(
programInfo.attribLocations.vertexPosition);
}
// Tell WebGL how to pull out the texture coordinates from
// the texture coordinate buffer into the textureCoord attribute.
{
const type = gl.FLOAT;
const normalize = false;
const stride = 0;
const offset = 0;
gl.bindBuffer(gl.ARRAY_BUFFER, buffers.textureCoord);
gl.vertexAttribPointer(
programInfo.attribLocations.textureCoord,
buffers.textureCoord.itemSize,
type,
normalize,
stride,
offset);
gl.enableVertexAttribArray(
programInfo.attribLocations.textureCoord);
}
// Tell WebGL which indices to use to index the vertices
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, buffers.indices);
// Tell WebGL to use our program when drawing
gl.useProgram(programInfo.program);
// Set the shader uniforms
gl.uniformMatrix4fv(
programInfo.uniformLocations.projectionMatrix,
false,
projectionMatrix);
gl.uniformMatrix4fv(
programInfo.uniformLocations.modelViewMatrix,
false,
modelViewMatrix);
// Specify the texture to map onto the faces.
// Tell WebGL we want to affect texture unit 0
gl.activeTexture(gl.TEXTURE0);
// Bind the texture to texture unit 0
gl.bindTexture(gl.TEXTURE_2D, texture);
// Tell the shader we bound the texture to texture unit 0
gl.uniform1i(programInfo.uniformLocations.uSampler, 0);
{
const type = gl.UNSIGNED_SHORT;
const offset = 0;
gl.drawElements(gl.TRIANGLES, buffers.indices.numItems, type, offset);
}
}
}
class Cone {
static initBuffers(gl) {
var positionBuffer;
var textureCoordBuffer;
var indexBuffer;
var vertexPositionData = [];
var textureCoordData = [];
var indexData = [];
const r = 1;
const n = 360;
vertexPositionData.push(0, 1, 0);
textureCoordData.push(0.5, 0.5);
const y = -1;
for (let i = 0; i < n; i++) {
const x = r * Math.cos(i * 2 * Math.PI / n);
const z = r * Math.sin(i * 2 * Math.PI / n);
vertexPositionData.push(x);
vertexPositionData.push(y);
vertexPositionData.push(z);
const u = x/(2*r) + 0.5;
const v = z/(2*r) + 0.5;
textureCoordData.push(u);
textureCoordData.push(v);
}
for (let i = 0; i < n; i++) {
const first = 0;
const second = i;
const third = (i + 1) % n;
indexData.push(first);
indexData.push(second);
indexData.push(third);
}
textureCoordBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, textureCoordBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(textureCoordData), gl.STATIC_DRAW);
textureCoordBuffer.itemSize = 2;
textureCoordBuffer.numItems = textureCoordData.length / 2;
positionBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, positionBuffer);
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertexPositionData), gl.STATIC_DRAW);
positionBuffer.itemSize = 3;
positionBuffer.numItems = vertexPositionData.length / 3;
indexBuffer = gl.createBuffer();
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, indexBuffer);
gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint16Array(indexData), gl.STATIC_DRAW);
indexBuffer.itemSize = 1;
indexBuffer.numItems = indexData.length;
return {
position: positionBuffer,
textureCoord: textureCoordBuffer,
indices: indexBuffer,
};
}
static drawScene(gl, programInfo, buffers, texture, deltaTime, projectionMatrix, modelViewMatrix) {
// Tell WebGL how to pull out the positions from the position
// buffer into the vertexPosition attribute
{
const type = gl.FLOAT;
const normalize = false;
const stride = 0;
const offset = 0;
gl.bindBuffer(gl.ARRAY_BUFFER, buffers.position);
gl.vertexAttribPointer(
programInfo.attribLocations.vertexPosition,
buffers.position.itemSize,
type,
normalize,
stride,
offset);
gl.enableVertexAttribArray(
programInfo.attribLocations.vertexPosition);
}
// Tell WebGL how to pull out the texture coordinates from
// the texture coordinate buffer into the textureCoord attribute.
{
const type = gl.FLOAT;
const normalize = false;
const stride = 0;
const offset = 0;
gl.bindBuffer(gl.ARRAY_BUFFER, buffers.textureCoord);
gl.vertexAttribPointer(
programInfo.attribLocations.textureCoord,
buffers.textureCoord.itemSize,
type,
normalize,
stride,
offset);
gl.enableVertexAttribArray(
programInfo.attribLocations.textureCoord);
}
// Tell WebGL which indices to use to index the vertices
gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, buffers.indices);
// Tell WebGL to use our program when drawing
gl.useProgram(programInfo.program);
// Set the shader uniforms
gl.uniformMatrix4fv(
programInfo.uniformLocations.projectionMatrix,
false,
projectionMatrix);
gl.uniformMatrix4fv(
programInfo.uniformLocations.modelViewMatrix,
false,
modelViewMatrix);
// Specify the texture to map onto the faces.
// Tell WebGL we want to affect texture unit 0
gl.activeTexture(gl.TEXTURE0);
// Bind the texture to texture unit 0
gl.bindTexture(gl.TEXTURE_2D, texture);
// Tell the shader we bound the texture to texture unit 0
gl.uniform1i(programInfo.uniformLocations.uSampler, 0);
{
const type = gl.UNSIGNED_SHORT;
const offset = 0;
gl.drawElements(gl.TRIANGLES, buffers.indices.numItems, type, offset);
}
}
}
var cubeRotation = 0.0;
main();
//
// Start here
//
function main() {
const canvas = document.querySelector('#glcanvas');
const gl = canvas.getContext('webgl');
// If we don't have a GL context, give up now
if (!gl) {
alert('Unable to initialize WebGL. Your browser or machine may not support it.');
return;
}
// Vertex shader program
const vsSource = `
attribute vec4 aVertexPosition;
attribute vec2 aTextureCoord;
uniform mat4 uModelViewMatrix;
uniform mat4 uProjectionMatrix;
varying highp vec2 vTextureCoord;
void main(void) {
gl_Position = uProjectionMatrix * uModelViewMatrix * aVertexPosition;
vTextureCoord = aTextureCoord;
}
`;
// Fragment shader program
const fsSource = `
varying highp vec2 vTextureCoord;
uniform sampler2D uSampler;
void main(void) {
gl_FragColor = texture2D(uSampler, vTextureCoord);
}
`;
// Initialize a shader program; this is where all the lighting
// for the vertices and so forth is established.
const shaderProgram = initShaderProgram(gl, vsSource, fsSource);
// Collect all the info needed to use the shader program.
// Look up which attributes our shader program is using
// for aVertexPosition, aTextureCoord and also
// look up uniform locations.
const programInfo = {
program: shaderProgram,
attribLocations: {
vertexPosition: gl.getAttribLocation(shaderProgram, 'aVertexPosition'),
textureCoord: gl.getAttribLocation(shaderProgram, 'aTextureCoord'),
},
uniformLocations: {
projectionMatrix: gl.getUniformLocation(shaderProgram, 'uProjectionMatrix'),
modelViewMatrix: gl.getUniformLocation(shaderProgram, 'uModelViewMatrix'),
uSampler: gl.getUniformLocation(shaderProgram, 'uSampler'),
},
};
const textures = {
cone: loadTexture(gl, 'https://raw.githubusercontent.com/adelavegaf/webgl-textures/master/hershey.jpg'),
cylinder: loadTexture(gl, 'https://raw.githubusercontent.com/adelavegaf/webgl-textures/master/coke.jpg'),
sphere: loadTexture(gl, 'https://raw.githubusercontent.com/adelavegaf/webgl-textures/master/soccer.png')
};
var then = 0;
// Draw the scene repeatedly
function render(now) {
now *= 0.001; // convert to seconds
const deltaTime = now - then;
then = now;
const buffers = {};
buffers.sphere = Sphere.initBuffers(gl);
buffers.cone = Cone.initBuffers(gl);
buffers.cylinder = Cylinder.initBuffers(gl);
drawScene(gl, programInfo, buffers, textures, deltaTime);
requestAnimationFrame(render);
}
requestAnimationFrame(render);
}
//
// Initialize a texture and load an image.
// When the image finished loading copy it into the texture.
//
function loadTexture(gl, url) {
const texture = gl.createTexture();
gl.bindTexture(gl.TEXTURE_2D, texture);
// Because images have to be download over the internet
// they might take a moment until they are ready.
// Until then put a single pixel in the texture so we can
// use it immediately. When the image has finished downloading
// we'll update the texture with the contents of the image.
const level = 0;
const internalFormat = gl.RGBA;
const width = 1;
const height = 1;
const border = 0;
const srcFormat = gl.RGBA;
const srcType = gl.UNSIGNED_BYTE;
const pixel = new Uint8Array([0, 0, 255, 255]); // opaque blue
gl.texImage2D(gl.TEXTURE_2D, level, internalFormat,
width, height, border, srcFormat, srcType,
pixel);
const image = new Image();
image.crossOrigin = '';
image.onload = function () {
gl.bindTexture(gl.TEXTURE_2D, texture);
gl.texImage2D(gl.TEXTURE_2D, level, internalFormat,
srcFormat, srcType, image);
// WebGL1 has different requirements for power of 2 images
// vs non power of 2 images so check if the image is a
// power of 2 in both dimensions.
if (isPowerOf2(image.width) && isPowerOf2(image.height)) {
// Yes, it's a power of 2. Generate mips.
gl.generateMipmap(gl.TEXTURE_2D);
} else {
// No, it's not a power of 2. Turn of mips and set
// wrapping to clamp to edge
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MAG_FILTER, gl.LINEAR);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_MIN_FILTER, gl.LINEAR);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE);
gl.texParameteri(gl.TEXTURE_2D, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE);
}
};
image.src = url;
return texture;
}
function isPowerOf2(value) {
return (value & (value - 1)) == 0;
}
//
// Draw the scene.
//
function drawScene(gl, programInfo, buffers, textures, deltaTime) {
gl.clearColor(0.0, 0.0, 0.0, 1.0); // Clear to black, fully opaque
gl.clearDepth(1.0); // Clear everything
gl.enable(gl.DEPTH_TEST); // Enable depth testing
gl.depthFunc(gl.LEQUAL); // Near things obscure far things
// Clear the canvas before we start drawing on it.
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
// Create a perspective matrix, a special matrix that is
// used to simulate the distortion of perspective in a camera.
// Our field of view is 45 degrees, with a width/height
// ratio that matches the display size of the canvas
// and we only want to see objects between 0.1 units
// and 100 units away from the camera.
const fieldOfView = 45 * Math.PI / 180; // in radians
const aspect = gl.canvas.clientWidth / gl.canvas.clientHeight;
const zNear = 0.1;
const zFar = 100.0;
const projectionMatrix = mat4.create();
// note: glmatrix.js always has the first argument
// as the destination to receive the result.
mat4.perspective(projectionMatrix,
fieldOfView,
aspect,
zNear,
zFar);
// Set the drawing position to the "identity" point, which is
// the center of the scene.
const modelViewMatrix = mat4.create();
// Now move the drawing position a bit to where we want to
// start drawing the square.
mat4.translate(modelViewMatrix, // destination matrix
modelViewMatrix, // matrix to translate
[-0.0, 0.0, -6.0]); // amount to translate
mat4.scale(modelViewMatrix, modelViewMatrix, [0.5, 0.5, 0.5]);
mat4.rotate(modelViewMatrix, // destination matrix
modelViewMatrix, // matrix to rotate
cubeRotation, // amount to rotate in radians
[0, 0, 1]); // axis to rotate around (Z)
mat4.rotate(modelViewMatrix, // destination matrix
modelViewMatrix, // matrix to rotate
cubeRotation * .7,// amount to rotate in radians
[0, 1, 0]); // axis to rotate around (X)
Cylinder.drawScene(gl, programInfo, buffers.cylinder, textures.cylinder, deltaTime, projectionMatrix, modelViewMatrix);
mat4.translate(modelViewMatrix, modelViewMatrix, [-4.0, 0.0, 0.0]);
Cone.drawScene(gl, programInfo, buffers.cone, textures.cone, deltaTime, projectionMatrix, modelViewMatrix);
mat4.translate(modelViewMatrix, modelViewMatrix, [8.0, 0.0, 0.0]);
Sphere.drawScene(gl, programInfo, buffers.sphere, textures.sphere, deltaTime, projectionMatrix, modelViewMatrix);
// Update the rotation for the next draw
cubeRotation += deltaTime;
}
//
// Initialize a shader program, so WebGL knows how to draw our data
//
function initShaderProgram(gl, vsSource, fsSource) {
const vertexShader = loadShader(gl, gl.VERTEX_SHADER, vsSource);
const fragmentShader = loadShader(gl, gl.FRAGMENT_SHADER, fsSource);
// Create the shader program
const shaderProgram = gl.createProgram();
gl.attachShader(shaderProgram, vertexShader);
gl.attachShader(shaderProgram, fragmentShader);
gl.linkProgram(shaderProgram);
// If creating the shader program failed, alert
if (!gl.getProgramParameter(shaderProgram, gl.LINK_STATUS)) {
alert('Unable to initialize the shader program: ' + gl.getProgramInfoLog(shaderProgram));
return null;
}
return shaderProgram;
}
//
// creates a shader of the given type, uploads the source and
// compiles it.
//
function loadShader(gl, type, source) {
const shader = gl.createShader(type);
// Send the source to the shader object
gl.shaderSource(shader, source);
// Compile the shader program
gl.compileShader(shader);
// See if it compiled successfully
if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) {
alert('An error occurred compiling the shaders: ' + gl.getShaderInfoLog(shader));
gl.deleteShader(shader);
return null;
}
return shader;
}
Also see: Tab Triggers