HTML preprocessors can make writing HTML more powerful or convenient. For instance, Markdown is designed to be easier to write and read for text documents and you could write a loop in Pug.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. So you don't have access to higher-up elements like the <html>
tag. If you want to add classes there that can affect the whole document, this is the place to do it.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. If you need things in the <head>
of the document, put that code here.
The resource you are linking to is using the 'http' protocol, which may not work when the browser is using https.
CSS preprocessors help make authoring CSS easier. All of them offer things like variables and mixins to provide convenient abstractions.
It's a common practice to apply CSS to a page that styles elements such that they are consistent across all browsers. We offer two of the most popular choices: normalize.css and a reset. Or, choose Neither and nothing will be applied.
To get the best cross-browser support, it is a common practice to apply vendor prefixes to CSS properties and values that require them to work. For instance -webkit-
or -moz-
.
We offer two popular choices: Autoprefixer (which processes your CSS server-side) and -prefix-free (which applies prefixes via a script, client-side).
Any URLs added here will be added as <link>
s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.
You can apply CSS to your Pen from any stylesheet on the web. Just put a URL to it here and we'll apply it, in the order you have them, before the CSS in the Pen itself.
You can also link to another Pen here (use the .css
URL Extension) and we'll pull the CSS from that Pen and include it. If it's using a matching preprocessor, use the appropriate URL Extension and we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
JavaScript preprocessors can help make authoring JavaScript easier and more convenient.
Babel includes JSX processing.
Any URL's added here will be added as <script>
s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.
You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.
If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
Search for and use JavaScript packages from npm here. By selecting a package, an import
statement will be added to the top of the JavaScript editor for this package.
Using packages here is powered by esm.sh, which makes packages from npm not only available on a CDN, but prepares them for native JavaScript ESM usage.
All packages are different, so refer to their docs for how they work.
If you're using React / ReactDOM, make sure to turn on Babel for the JSX processing.
If active, Pens will autosave every 30 seconds after being saved once.
If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.
If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.
Visit your global Editor Settings.
<script id="shader-fs" type="x-shader/x-fragment">
#define PI 3.14159265359
#define TWO_PI PI * 2.0
#define HALF_PI PI / 2.0
precision mediump float;
uniform float u_time;
uniform vec2 u_mouse;
uniform vec2 u_resolution;
struct Camera {
vec3 position;
vec3 ray;
};
struct Light {
vec3 position;
vec3 ambientWeight;
vec3 diffuseWeight;
vec3 specularWeight;
};
float random(float v) {
return fract(sin(v) * 43758.5453123);
}
float smoothmin(float d1, float d2, float k) {
return -log(exp(-k * d1) + exp(-k * d2)) / k;
}
vec3 repeat(vec3 p, vec3 interval) {
return mod(p, interval) - interval / 2.0;
}
vec3 repeatX(vec3 p, float interval) {
return vec3(mod(p.x, interval) - interval / 2.0, p.y, p.z);
}
vec3 repeatY(vec3 p, float interval) {
return vec3(p.x, mod(p.y, interval) - interval / 2.0, p.z);
}
vec3 repeatZ(vec3 p, float interval) {
return vec3(p.x, p.y, mod(p.z, interval) - interval / 2.0);
}
vec3 rotateX(vec3 p, float theta) {
float c = cos(-theta);
float s = sin(-theta);
mat3 m = mat3(vec3(1, 0.0, 0.0),
vec3(0.0, c, -s),
vec3(0.0, s, c));
return m * p;
}
vec3 rotateY(vec3 p, float theta) {
float c = cos(-theta);
float s = sin(-theta);
mat3 m = mat3(vec3(c, 0.0, s),
vec3(0.0, 1.0, 0.0),
vec3(-s, 0.0, c));
return m * p;
}
vec3 rotateZ(vec3 p, float theta) {
float c = cos(-theta);
float s = sin(-theta);
mat3 m = mat3(vec3(c, -s, 0.0),
vec3(s, c, 0.0),
vec3(0.0, 0.0, 1.0));
return m * p;
}
vec3 translate(vec3 p, vec3 t) {
mat4 m = mat4(vec4(1.0, 0.0, 0.0, 0.0),
vec4(0.0, 1.0, 0.0, 0.0),
vec4(0.0, 0.0, 1.0, 0.0),
vec4(-t.x, -t.y, -t.z, 1.0));
return (m * vec4(p, 1.0)).xyz;
}
float calcBoxDistance(vec3 p, vec3 size) {
return length(max(abs(p) - size, 0.0));
}
float calcRoundBoxDistance(vec3 p, vec3 size, float r) {
return calcBoxDistance(p, size) - r;
}
float calcSphereDistance(vec3 p, float size) {
return length(p) - size;
}
float calcPlainDistance(vec3 p, vec3 n) {
return dot(p, n);
}
float calcTorusDistance(vec3 p, vec2 size) {
vec2 q = vec2(length(p.xz) - size.x, p.y);
return length(q) - size.y;
}
float calcCylinderDistance(vec3 p, vec3 size) {
return length(p.xz - size.xy) - size.z;
}
float calcDistance(vec3 p) {
float d = 10000000.0;
d = min(d, calcSphereDistance(translate(p, vec3(0.0, 3.0, 0.0)), 1.0));
d = min(d, calcPlainDistance(p, vec3(0.0, 1.0, 0.0)));
return d;
}
vec3 calcNormal(vec3 p) {
float delta = 0.00001;
return normalize(vec3(
calcDistance(p + vec3(delta, 0.0, 0.0)) - calcDistance(p - vec3(delta, 0.0, 0.0)),
calcDistance(p + vec3(0.0, delta, 0.0)) - calcDistance(p - vec3(0.0, delta, 0.0)),
calcDistance(p + vec3(0.0, 0.0, delta)) - calcDistance(p - vec3(0.0, 0.0, delta))
));
}
Camera getPerspectiveCamera(vec2 pos, vec3 eye, vec3 center, vec3 top, float fov) {
float camRadian = fov / 2.0 * PI / 180.0;
vec3 viewDir = normalize(center - eye);
vec3 camSide = cross(viewDir, top);
vec3 camTop = cross(camSide, viewDir);
Camera camera;
camera.position = eye;
camera.ray = normalize(camTop * sin(camRadian * pos.y) + camSide * sin(camRadian * pos.x) + viewDir * cos(camRadian * pos.x));
return camera;
}
Camera getOrthographicCamera(vec2 pos, vec3 eye, vec3 center, vec3 top, float width, float height) {
vec3 viewDir = normalize(center - eye);
vec3 camSide = cross(viewDir, top);
vec3 camTop = cross(camSide, viewDir);
Camera camera;
camera.position = eye + vec3(camTop * pos.y * height / 2.0 + camSide * pos.x * width / 2.0);
camera.ray = viewDir;
return camera;
}
float calcShadow(vec3 pos, vec3 light) {
vec3 lightDir = normalize(light - pos);
float depth = 0.01;
float d;
for (int i = 0; i < 16; i++) {
d = calcDistance(pos + lightDir * depth);
depth += d;
}
return d < 0.001 ? 0.5 : 1.0;
}
float calcSoftShadow(vec3 pos, vec3 light) {
vec3 lightDir = normalize(light - pos);
float depth = 0.001;
float bright = 1.0;
float d;
float shadowIntensity = 0.7;
float shadowSharpness = 8.0;
for (int i = 0; i < 32; i++) {
d = calcDistance(pos + lightDir * depth);
if (d < 0.001) {
return 1.0 - shadowIntensity;
}
bright = min(bright, shadowSharpness * d / depth);
depth += d;
}
return 1.0 - (1.0 - bright) * shadowIntensity;
}
void main(void) {
vec2 st = (gl_FragCoord.xy * 2.0 - u_resolution) / min(u_resolution.x, u_resolution.y);
vec2 mouse = (u_mouse * 2.0 - u_resolution) / min(u_resolution.x, u_resolution.y);
float time = u_time * 0.001;
vec3 cameraPosition = vec3(20.0 * cos(mouse.x * PI), 10.0 + 5.0 * mouse.y, 20.0 * sin(mouse.x * PI));
vec3 viewCenter = vec3(0.0);
vec3 cameraTop = vec3(0.0, 1.0, 0.0);
Camera camera = getPerspectiveCamera(st, cameraPosition, viewCenter, vec3(0.0, 1.0, 0.0), 60.0);
// Camera camera = getOrthographicCamera(st, cameraPosition, viewCenter, vec3(0.0, 1.0, 0.0), 50.0, 50.0);
vec3 rayPosition = camera.position;
vec3 rayDirection = camera.ray;
vec3 color = vec3(0.0);
float d;
for (int i = 0; i < 256; i++) {
d = calcDistance(rayPosition);
rayPosition += rayDirection * d;
}
Light lights[3];
lights[0].position = vec3(10.0 * cos(time),10.0 + 3.0 * sin(time / 3.0), 10.0 * sin(time));
lights[0].ambientWeight = vec3(1.0, 0.0, 0.0);
lights[0].diffuseWeight = vec3(1.0, 0.0, 0.0);
lights[0].specularWeight = vec3(1.0, 0.0, 0.0);
lights[1].position = vec3(10.0 * cos(time * 2.0), 10.0 + 3.0 * sin(time / 2.0), 10.0 * sin(time * 2.0));
lights[1].ambientWeight = vec3(0.0, 1.0, 0.0);
lights[1].diffuseWeight = vec3(0.0, 1.0, 0.0);
lights[1].specularWeight = vec3(0.0, 1.0, 0.0);
lights[2].position = vec3(10.0 * cos(time * 3.0), 10.0 + 3.0 * sin(time), 10.0 * sin(time * 3.0));
lights[2].ambientWeight = vec3(0.0, 0.0, 1.0);
lights[2].diffuseWeight = vec3(0.0, 0.0, 1.0);
lights[2].specularWeight = vec3(0.0, 0.0, 1.0);
if (d < 0.0001) {
vec3 normal = calcNormal(rayPosition);
color = vec3(0.0);
for (int i = 0; i < 3; i++) {
Light light = lights[i];
vec3 vecToLight = normalize(light.position - rayPosition);
float diffuseWeight = max(dot(normal, vecToLight), 0.0);
vec3 reflectVec = normalize(reflect(-vecToLight, normal));
float specularWeight = pow(max(dot(reflectVec, -rayDirection), 0.0), 16.0);
float shadow = calcSoftShadow(rayPosition + normal * 0.01, light.position);
vec3 c = vec3(0.3, 0.3, 0.3) * light.ambientWeight + vec3(0.5, 0.5, 0.5) * light.diffuseWeight * diffuseWeight * shadow + vec3(1.0, 1.0, 1.0) * light.specularWeight * specularWeight;
// c *= shadow;
color += c;
// color *= shadow;
}
}
gl_FragColor = vec4(color, 1.0);
}
</script>
<script id="shader-vs" type="x-shader/x-vertex">
attribute vec3 position;
void main(void) {
gl_Position = vec4(position, 1.0);
}
</script>
<canvas id="canvas">
</canvas>
body {
margin: 0;
overflow: hidden;
}
var canvas;
var gl;
window.onload = function() {
var fragmentShader, vertexShader;
var shaderProgram;
var mouse;
var startTime;
var positionAttribute;
var timeUniformLocatoin, mouseUniformLocation, resolutionUniformLocation;
var verticesBuffer;
var vertices;
canvas = document.getElementById("canvas");
canvas.width = window.innerWidth;
canvas.height = window.innerHeight;
gl = canvas.getContext("webgl") || canvas.getContext("experimental-webgl");
if (!gl) {
console.error('can not get context');
return;
}
canvas.addEventListener('mousemove', function(e) {
mouse = [e.offsetX, canvas.height - e.offsetY];
});
mouse = [0, 0];
startTime = new Date().getTime();
fragmentShader = getShader('shader-fs');
vertexShader = getShader('shader-vs');
shaderProgram = gl.createProgram();
gl.attachShader(shaderProgram, vertexShader);
gl.attachShader(shaderProgram, fragmentShader);
gl.linkProgram(shaderProgram);
if (!gl.getProgramParameter(shaderProgram, gl.LINK_STATUS)) {
console.error('can not initialize shader program');
return;
}
gl.useProgram(shaderProgram);
positionAttribute = gl.getAttribLocation(shaderProgram, 'position');
gl.enableVertexAttribArray(positionAttribute);
timeUniformLocatoin = gl.getUniformLocation(shaderProgram, 'u_time');
mouseUniformLocation = gl.getUniformLocation(shaderProgram, 'u_mouse');
resolutionUniformLocation = gl.getUniformLocation(shaderProgram, 'u_resolution');
verticesBuffer = gl.createBuffer();
gl.bindBuffer(gl.ARRAY_BUFFER, verticesBuffer);
vertices = [
1.0, 1.0, 0.0,
-1.0, 1.0, 0.0,
1.0, -1.0, 0.0,
-1.0, -1.0, 0.0
];
gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(vertices), gl.STATIC_DRAW);
gl.clearColor(0.0, 0.0, 0.0, 1.0);
render();
function getShader(id) {
var shaderScript, shader;
shaderScript = document.getElementById(id);
if(!shaderScript) {
return null;
}
if (shaderScript.type == 'x-shader/x-fragment') {
shader = gl.createShader(gl.FRAGMENT_SHADER);
} else if (shaderScript.type == 'x-shader/x-vertex') {
shader = gl.createShader(gl.VERTEX_SHADER);
} else {
return null;
}
gl.shaderSource(shader, shaderScript.text);
gl.compileShader(shader);
if (!gl.getShaderParameter(shader, gl.COMPILE_STATUS)) {
console.error('can not comple shader source');
console.error(gl.getShaderInfoLog(shader));
return null;
}
return shader;
}
function render() {
var time, resolution;
requestAnimationFrame(render);
gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);
time = (new Date().getTime() - startTime);
resolution = [canvas.width, canvas.height];
gl.uniform1f(timeUniformLocatoin, time);
gl.uniform2fv(mouseUniformLocation, mouse);
gl.uniform2fv(resolutionUniformLocation, resolution);
gl.bindBuffer(gl.ARRAY_BUFFER, verticesBuffer);
gl.vertexAttribPointer(verticesBuffer, 3, gl.FLOAT, false, 0, 0);
gl.drawArrays(gl.TRIANGLE_STRIP, 0, 4);
gl.flush();
}
}
window.onresize = function() {
canvas.width = window.innerWidth;
canvas.height = window.innerHeight;
gl.viewport(0, 0, canvas.width, canvas.height);
}
Also see: Tab Triggers