HTML preprocessors can make writing HTML more powerful or convenient. For instance, Markdown is designed to be easier to write and read for text documents and you could write a loop in Pug.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. So you don't have access to higher-up elements like the <html>
tag. If you want to add classes there that can affect the whole document, this is the place to do it.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. If you need things in the <head>
of the document, put that code here.
The resource you are linking to is using the 'http' protocol, which may not work when the browser is using https.
CSS preprocessors help make authoring CSS easier. All of them offer things like variables and mixins to provide convenient abstractions.
It's a common practice to apply CSS to a page that styles elements such that they are consistent across all browsers. We offer two of the most popular choices: normalize.css and a reset. Or, choose Neither and nothing will be applied.
To get the best cross-browser support, it is a common practice to apply vendor prefixes to CSS properties and values that require them to work. For instance -webkit-
or -moz-
.
We offer two popular choices: Autoprefixer (which processes your CSS server-side) and -prefix-free (which applies prefixes via a script, client-side).
Any URLs added here will be added as <link>
s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.
You can apply CSS to your Pen from any stylesheet on the web. Just put a URL to it here and we'll apply it, in the order you have them, before the CSS in the Pen itself.
You can also link to another Pen here (use the .css
URL Extension) and we'll pull the CSS from that Pen and include it. If it's using a matching preprocessor, use the appropriate URL Extension and we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
JavaScript preprocessors can help make authoring JavaScript easier and more convenient.
Babel includes JSX processing.
Any URL's added here will be added as <script>
s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.
You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.
If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
Search for and use JavaScript packages from npm here. By selecting a package, an import
statement will be added to the top of the JavaScript editor for this package.
Using packages here is powered by esm.sh, which makes packages from npm not only available on a CDN, but prepares them for native JavaScript ESM usage.
All packages are different, so refer to their docs for how they work.
If you're using React / ReactDOM, make sure to turn on Babel for the JSX processing.
If active, Pens will autosave every 30 seconds after being saved once.
If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.
If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.
Visit your global Editor Settings.
<body onload="run();">
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<style src="style.css"></style>
<div style="height:10px;"></div>
<h2>Dynamic Reactor Simulation</h2>
<p>Proof-of concept using RK4 algorithm and Chart.js to solve a differential-algebraic system of equations</p>
<p>One-dimensional Isothermal & Isobaric simulation of Ammonia Production </p>
<p>0.5 N<sub>2</sub> + 1.5 H<sub>2</sub> ⇌ NH<sub>3</sub></p>
<p>Inlet composition: </p>
<span>N<sub>2</sub>:</span> <input type="number" min="0" max="1" step="0.1" value="0.5" id="input_x_N2" class="inputBox">
<span>H<sub>2</sub>:</span> <input type="number" min="0" max="1" step="0.1" value="0.5" id="input_x_H2" class="inputBox">
<span>NH<sub>3</sub>:</span> <input type="number" min="0" max="1" step="0.1" value="0.0" id="input_x_NH3" class="inputBox">
<div class="slidecontainer" style="margin-top:30px;">
<span>Resolution:</span> <input type="range" min="1" max="200" value="100" class="slider" id="myRange"> <span id="sliderValue"></span>
</div>
<!-- script to display slider value -->
<script>
var slider = document.getElementById("myRange");
var output = document.getElementById("sliderValue");
output.innerHTML = slider.value; // Display the default slider value
// Update the current slider value (each time you drag the slider handle)
slider.oninput = function() {
output.innerHTML = this.value;
console.log(document.getElementById("myRange").value);
}
</script>
<div style="height:30px;"></div>
<div style="margin: auto; padding: 20px; width:70vw; height:auto; background-color:aliceblue;"><canvas id="myChart"></canvas></div>
<div style="height:20px;"></div>
<div style="margin: auto; padding: 20px; width:70vw; height:auto; background-color:aliceblue; display:none;"><canvas id="myChart2"></canvas></div>
<div style="height:20px;"></div>
<button id="button" onclick="run();">Graph</button>
<div style="height:20px;"></div>
<script src="script.js"></script>
</body>
body {
background: #222;
color: white;
text-align: center;
font-family: "Raleway", sans-serif;
}
.slidecontainer {
width: 100%; /* Width of the outside container */
}
/* The slider itself */
.slider {
-webkit-appearance: none; /* Override default CSS styles */
appearance: none;
width: 20%; /* Full-width */
height: 10px; /* Specified height */
background: #d3d3d3; /* Grey background */
outline: none; /* Remove outline */
opacity: 0.7; /* Set transparency (for mouse-over effects on hover) */
-webkit-transition: 0.2s; /* 0.2 seconds transition on hover */
transition: opacity 0.2s;
border-radius: 20px;
cursor: pointer;
}
/* Mouse-over effects */
.slider:hover {
opacity: 1; /* Fully shown on mouse-over */
}
/* The slider handle (use -webkit- (Chrome, Opera, Safari, Edge) and -moz- (Firefox) to override default look) */
.slider::-webkit-slider-thumb {
-webkit-appearance: none; /* Override default look */
appearance: none;
border-radius: 30px;
width: 25px; /* Set a specific slider handle width */
height: 25px; /* Slider handle height */
background: grey; /* Green background */
cursor: pointer; /* Cursor on hover */
}
.slider::-moz-range-thumb {
width: 25px; /* Set a specific slider handle width */
height: 25px; /* Slider handle height */
background: grey; /* Green background */
cursor: pointer; /* Cursor on hover */
}
/* Number input box styles */
.inputBox {
background-color: transparent;
color: white;
padding: 5px;
border: none;
outline: 2px solid white;
margin-right: 10px;
}
/* Global button styles */
button {
padding-left: 15px;
padding-right: 15px;
padding-top: 10px;
padding-bottom: 10px;
font-size: large;
color: white;
background-color: #222;
border: none;
outline: 4px solid white;
border-radius: 10px;
transition: all 0.1s ease-in-out;
}
button:hover {
cursor: pointer;
background-color: #333;
transform: scale(0.95);
}
// by: Alexander Reeves
const ctx = document.getElementById("myChart");
const ctx2 = document.getElementById("myChart2");
var myChart = new Chart(ctx, {});
var myChart2 = new Chart(ctx2, {});
var labels = []; // labels for x axis
var t = 0; // time variable in s
// ----------- Assign Parameters -----------
// must be 'var' if parameters are changed during runtime ( see updateParameters() )
var T = 723.15; // Temperature in K -> isothermal case
var xN2_in = document.getElementById("input_x_N2").value; // inlet composition of component N2
var xH2_in = document.getElementById("input_x_H2").value; // inlet composition of component H2
var xNH3_in = document.getElementById("input_x_NH3").value; // inlet composition of component NH3
var V = 10; // reactor volume in m^3
var R = 8.314; // universal gas constant J/K⋅mol
var P = 100000 * 150; // pressure in Pa -> isobaric
var F_in = 100000; //(P*V)/(R*T); // inlet molar flowrate in mol/s (approx defined as total reactor content)
function updateParameters() {
// parameters can be re-assigned dynamically via if statements related to the decision variable
// example:
//if (t >= 100) { F_in = F_in*1.2 } // 20% increase in inlet flowrate at time 100s
//if (t >= 2) { P = (t-2)/(4-2)*100000*10 } // Gradual pressure change from P_initial to 10 bar over time from 2s to 4s { (t-t_start)/(t_end-t_start) * target_value }
}
// ----------- Initialize Model variables -----------
// algebraic:
var var_x = 0; // example
var x_N2 = 1; // molar fraction of N2
var x_H2 = 0; // molar fraction of H2
var x_NH3 = 0; // molar fraction of NH3
var M_t = 0; // total mass in system
//var M_N2 = 0; // molar holdup of N2
//var M_H2 = 0; // molar holdup of H2
//var M_NH3 = 0; // molar holdup of NH3
var r = 0; // reaction rate (Ammonia production: N_2 + 3H_2 => 2NH_3) in kmol/(m3*s)
var p_N2 = 0; // partial pressure of component i
var p_H2 = 0; // partial pressure of component i
var p_NH3 = 0; // partial pressure of component i
//var P = 100000; // total pressure in system
var rho = 0; // molar density in system
var F_out = 0; //F_in/100; // constant flowrate
// differential vbles arrays:
var M_N2 = [F_in * 1]; // molar holdup of N2
var M_H2 = [0]; // molar holdup of H2
var M_NH3 = [0]; // molar holdup of N2
// ----------- Initialize dataset arrays (for graphing) -----------
var graph_x_N2 = [];
var graph_x_H2 = [];
var graph_x_NH3 = [];
// ############### Algebraic Equations ###############
function solveAlgebraic(i) {
M_t = M_N2[i] + M_H2[i] + M_NH3[i];
x_N2 = M_N2[i] / M_t;
x_H2 = M_H2[i] / M_t;
x_NH3 = M_NH3[i] / M_t;
p_N2 = x_N2 * P;
p_H2 = x_H2 * P;
p_NH3 = x_NH3 * P;
r =
(Math.exp(-91000 / (R * T)) * Math.pow(p_N2, 0.5) * Math.pow(p_H2, 1.5) -
2.57 * Math.pow(10, 5) * Math.exp(-140000 / (R * T)) * p_NH3) /
1000; // rate equation kmol/(m3*s) -> /1000 for mol
rho = M_t / V;
F_out = M_t; // outlet flowrate = reactor content -> no increase or loss
console.log("r: " + r);
console.log("x_H2: " + x_H2);
console.log("p_H2: " + p_H2);
//console.log('Algebraic variables: ');
//console.log('Variable X: '+var_x);
}
// ############### ODE Equations ###############
function f_diff(t, y, functionSelect) {
t == 0;
y == 0;
// return the value of y' for the selected function from the ODE function array
if (functionSelect == 1) {
return F_in * xN2_in - F_out * x_N2 + -0.5 * r * V;
}
if (functionSelect == 2) {
return F_in * xH2_in - F_out * x_H2 + -1.5 * r * V;
}
if (functionSelect == 3) {
return F_in * xNH3_in - F_out * x_NH3 + 1 * r * V;
} else {
return 0;
}
}
// ############### ODE Solver ###############
function rk4iter(t, y, h, functionSelect) {
// compute the four RK coefficients using the RHS of the diff eq.
k1 = f_diff(t, y, functionSelect);
k2 = f_diff(t + h / 2, y + (k1 * h) / 2, functionSelect);
k3 = f_diff(t + h / 2, y + (k2 * h) / 2, functionSelect);
k4 = f_diff(t + h, y + k3 * h, functionSelect);
// compute the y value at the end of the iteration
return y + ((k1 + 2 * k2 + 2 * k3 + k4) * h) / 6;
}
function rk4(n, t_end) {
h = t_end / n; // compute the step size along the x-axis
// add initial conditions to array
t = 0; // initial value of x is 0
labels.push(0);
// loop until x reaches its target value
for (var i = 1; i <= n; i++) {
// check parameter states
updateParameters();
// re-solve algebraic values for each iteration
solveAlgebraic(i - 1);
// Perform iterations of the RK4 algorithm
M_N2[i] = rk4iter(t, M_N2[i - 1], h, 1);
M_H2[i] = rk4iter(t, M_H2[i - 1], h, 2);
M_NH3[i] = rk4iter(t, M_NH3[i - 1], h, 3);
// check for exceptions
if (M_N2[i] < 0) {
M_N2[i] = 0.0001;
//r = 0;
}
if (M_H2[i] < 0) {
M_H2[i] = 0.0001;
//r = 0;
}
if (M_NH3[i] < 0) {
M_NH3[i] = 0.0001;
//r = 0;
}
t += h; // time step
// record the x and y values for this iteration
console.log(t + "s, " + M_N2[i] + ", " + M_H2[i] + ", " + M_NH3[i]);
// Add data to the plot as well.
labels.push(t.toFixed(2));
// Add additional graphing variables
graph_x_N2.push(x_N2);
graph_x_H2.push(x_H2);
graph_x_NH3.push(x_NH3);
}
}
function run() {
// check inputs, give warning
if (
Number(document.getElementById("input_x_N2").value) +
Number(document.getElementById("input_x_H2").value) +
Number(document.getElementById("input_x_NH3").value) !=
1
) {
for (
i = 0;
i <= document.getElementsByClassName("inputBox").length - 1;
i++
) {
document.getElementsByClassName("inputBox")[i].style.backgroundColor =
"red";
}
setTimeout(function () {
for (
i = 0;
i <= document.getElementsByClassName("inputBox").length - 1;
i++
) {
document.getElementsByClassName("inputBox")[i].style.backgroundColor =
"initial";
}
}, 100);
setTimeout(function () {
for (
i = 0;
i <= document.getElementsByClassName("inputBox").length - 1;
i++
) {
document.getElementsByClassName("inputBox")[i].style.backgroundColor =
"red";
}
}, 200);
setTimeout(function () {
for (
i = 0;
i <= document.getElementsByClassName("inputBox").length - 1;
i++
) {
document.getElementsByClassName("inputBox")[i].style.backgroundColor =
"initial";
}
//location.reload(); //disabled by codepen
}, 300);
}
// empty data
clearAll();
// runs 4th order runge kutta method (steps,y_initial,x_end)
rk4(document.getElementById("myRange").value, 10);
// re-loads chart.js graph
loadGraph();
}
// ############### VISUALISATION ###############
// graphing using Chart.js
function loadGraph() {
// destroy first chart
myChart.destroy();
myChart2.destroy();
// run Chart.js graph
graph(labels);
// empty data
clearAll();
}
function clearAll() {
labels = [];
xN2_in = Number(document.getElementById("input_x_N2").value); // inlet composition of component N2
xH2_in = Number(document.getElementById("input_x_H2").value); // inlet composition of component H2
xNH3_in = Number(document.getElementById("input_x_NH3").value); // inlet composition of component NH3
if (xN2_in + xH2_in + xNH3_in != 1) {
// in case of incorrect inputs the values are scaled
xN2_in = 1 - (xH2_in + xNH3_in);
}
M_N2 = [F_in]; // molar holdup of N2 (initial condition: 100% nitrogen)
M_H2 = [0]; // molar holdup of H2
M_NH3 = [0]; // molar holdup of NH3
x_N2 = 1; // molar fraction of N2 (initial condition: 100% nitrogen)
x_H2 = 0; // molar fraction of H2
x_NH3 = 0; // molar fraction of NH3
M_t = 0; // total mass in system
r = 0; // reaction rate (Ammonia production: 0.5N_2 + 1.5H_2 => NH_3)
p_N2 = 0; // partial pressure of component i
p_H2 = 0; // partial pressure of component i
p_NH3 = 0; // partial pressure of component i
rho = 0; // molar density in system
F_out = F_in; // constant flowrate
// clear graphing data
graph_x_N2 = [];
graph_x_H2 = [];
graph_x_NH3 = [];
}
function graph(inputLabels) {
myChart = new Chart(ctx, {
type: "line",
data: {
labels: inputLabels,
datasets: [
{
label: "x_N2",
data: graph_x_N2,
borderWidth: 2,
pointStyle: false
},
{
label: "x_H2",
data: graph_x_H2,
borderWidth: 2,
pointStyle: false
},
{
label: "x_NH3",
data: graph_x_NH3,
borderWidth: 2,
pointStyle: false
}
]
},
options: {
indexAxis: "x",
scales: {
y: {
beginAtZero: true,
title: {
display: true,
text: 'outlet composition'
}
},
x: {
title: {
display: true,
text: 'time (s)'
}
}
}
}
});
myChart2 = new Chart(ctx2, {
type: "line",
data: {
labels: inputLabels,
datasets: [
{
label: "M_N2",
data: M_N2,
borderWidth: 2,
pointStyle: false
},
{
label: "M_H2",
data: M_H2,
borderWidth: 2,
pointStyle: false
},
{
label: "M_NH3",
data: M_NH3,
borderWidth: 2,
pointStyle: false
}
]
},
options: {
indexAxis: "x",
scales: {
y: {
beginAtZero: true,
title: {
display: true,
text: 'outlet flowrate (mol/s)'
}
},
x: {
title: {
display: true,
text: 'time (s)'
}
}
}
}
});
}
Also see: Tab Triggers