HTML preprocessors can make writing HTML more powerful or convenient. For instance, Markdown is designed to be easier to write and read for text documents and you could write a loop in Pug.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. So you don't have access to higher-up elements like the <html>
tag. If you want to add classes there that can affect the whole document, this is the place to do it.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. If you need things in the <head>
of the document, put that code here.
The resource you are linking to is using the 'http' protocol, which may not work when the browser is using https.
CSS preprocessors help make authoring CSS easier. All of them offer things like variables and mixins to provide convenient abstractions.
It's a common practice to apply CSS to a page that styles elements such that they are consistent across all browsers. We offer two of the most popular choices: normalize.css and a reset. Or, choose Neither and nothing will be applied.
To get the best cross-browser support, it is a common practice to apply vendor prefixes to CSS properties and values that require them to work. For instance -webkit-
or -moz-
.
We offer two popular choices: Autoprefixer (which processes your CSS server-side) and -prefix-free (which applies prefixes via a script, client-side).
Any URLs added here will be added as <link>
s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.
You can apply CSS to your Pen from any stylesheet on the web. Just put a URL to it here and we'll apply it, in the order you have them, before the CSS in the Pen itself.
You can also link to another Pen here (use the .css
URL Extension) and we'll pull the CSS from that Pen and include it. If it's using a matching preprocessor, use the appropriate URL Extension and we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
JavaScript preprocessors can help make authoring JavaScript easier and more convenient.
Babel includes JSX processing.
Any URL's added here will be added as <script>
s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.
You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.
If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
Search for and use JavaScript packages from npm here. By selecting a package, an import
statement will be added to the top of the JavaScript editor for this package.
Using packages here is powered by esm.sh, which makes packages from npm not only available on a CDN, but prepares them for native JavaScript ESM usage.
All packages are different, so refer to their docs for how they work.
If you're using React / ReactDOM, make sure to turn on Babel for the JSX processing.
If active, Pens will autosave every 30 seconds after being saved once.
If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.
If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.
Visit your global Editor Settings.
<div id="shader"></div>
<script id="vertex" type="x-shader/x-vertex">
varying vec2 vUv;
void main() { gl_Position = vec4(position, 1.0);
vUv = uv;
}
</script>
<script id="fragment" type="x-shader/x-fragment">
precision highp float;
uniform vec2 u_resolution;
uniform float u_time;
varying vec2 vUv;
const float PI = 3.1415926535897932384626433832795;
const float TAU = PI * 2.;
float wiggly(float cx, float cy, float amplitude, float frequency, float spread){
float w = sin(cx * amplitude * frequency * PI) * cos(cy * amplitude * frequency * PI) * spread;
return w;
}
void coswarp(inout vec3 trip, float warpsScale ){
trip.xyz += warpsScale * .1 * cos(3. * trip.yzx + (u_time * .25));
trip.xyz += warpsScale * .05 * cos(11. * trip.yzx + (u_time * .25));
trip.xyz += warpsScale * .025 * cos(17. * trip.yzx + (u_time * .25));
}
void uvRipple(inout vec2 uv, float intensity){
vec2 p = uv -.5;
float cLength=length(p);
uv= uv +(p/cLength)*cos(cLength*15.0-u_time*.5)*intensity;
}
float smoothMod(float x, float y, float e){
float top = cos(PI * (x/y)) * sin(PI * (x/y));
float bot = pow(sin(PI * (x/y)),2.);
float at = atan(top/bot);
return y * (1./2.) - (1./PI) * at ;
}
vec2 modPolar(vec2 p, float repetitions) {
float angle = 2.*3.14/repetitions;
float a = atan(p.y, p.x) + angle/2.;
float r = length(p);
//float c = floor(a/angle);
a = smoothMod(a,angle,033323231231561.9) - angle/2.;
//a = mix(a,)
vec2 p2 = vec2(cos(a), sin(a))*r;
p2 += wiggly(p2.x + u_time * .05, p2.y + u_time * .05, 2., 4., 0.05);
return p2;
}
float stroke(float x, float s, float w){
float d = step(s, x+ w * .5) - step(s, x - w * .5);
return clamp(d, 0., 1.);
}
// Classic Perlin 2D Noise
// by Stefan Gustavson
//
vec4 permute(vec4 x)
{
return mod(((x*34.0)+1.0)*x, 289.0);
}
vec2 fade(vec2 t) {return t*t*t*(t*(t*6.0-15.0)+10.0);}
float cnoise(vec2 P){
vec4 Pi = floor(P.xyxy) + vec4(0.0, 0.0, 1.0, 1.0);
vec4 Pf = fract(P.xyxy) - vec4(0.0, 0.0, 1.0, 1.0);
Pi = mod(Pi, 289.0); // To avoid truncation effects in permutation
vec4 ix = Pi.xzxz;
vec4 iy = Pi.yyww;
vec4 fx = Pf.xzxz;
vec4 fy = Pf.yyww;
vec4 i = permute(permute(ix) + iy);
vec4 gx = 2.0 * fract(i * 0.0243902439) - 1.0; // 1/41 = 0.024...
vec4 gy = abs(gx) - 0.5;
vec4 tx = floor(gx + 0.5);
gx = gx - tx;
vec2 g00 = vec2(gx.x,gy.x);
vec2 g10 = vec2(gx.y,gy.y);
vec2 g01 = vec2(gx.z,gy.z);
vec2 g11 = vec2(gx.w,gy.w);
vec4 norm = 1.79284291400159 - 0.85373472095314 *
vec4(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11));
g00 *= norm.x;
g01 *= norm.y;
g10 *= norm.z;
g11 *= norm.w;
float n00 = dot(g00, vec2(fx.x, fy.x));
float n10 = dot(g10, vec2(fx.y, fy.y));
float n01 = dot(g01, vec2(fx.z, fy.z));
float n11 = dot(g11, vec2(fx.w, fy.w));
vec2 fade_xy = fade(Pf.xy);
vec2 n_x = mix(vec2(n00, n01), vec2(n10, n11), fade_xy.x);
float n_xy = mix(n_x.x, n_x.y, fade_xy.y);
return 2.3 * n_xy;
}
vec2 rotate2D (vec2 _st, float _angle) {
_st -= 0.5;
_st = mat2(cos(_angle),-sin(_angle),
sin(_angle),cos(_angle)) * _st;
_st += 0.5;
return _st;
}
vec2 rotateTilePattern(vec2 _st){
// Scale the coordinate system by 2x2
_st *= 2.0;
// Give each cell an index number
// according to its position
float index = 0.0;
index += step(1., mod(_st.x,2.0));
index += step(1., mod(_st.y,2.0))*2.0;
// |
// 2 | 3
// |
//--------------
// |
// 0 | 1
// |
// Make each cell between 0.0 - 1.0
_st = fract(_st);
// Rotate each cell according to the index
if(index == 1.0){
// Rotate cell 1 by 90 degrees
_st = rotate2D(_st,PI*0.5);
} else if(index == 2.0){
// Rotate cell 2 by -90 degrees
_st = rotate2D(_st,PI*-0.5);
} else if(index == 3.0){
// Rotate cell 3 by 180 degrees
_st = rotate2D(_st,PI);
}
return _st;
}
float star(vec2 st, int V, float s) {
st = st*4.-2.;
float a = atan(st.y, st.x)/TAU;
float seg = a * float(V);
a = ((floor(seg) + 0.5)/float(V) +
mix(s,-s,step(.5,fract(seg))))
* TAU;
return abs(dot(vec2(cos(a),sin(a)),
st));
}
void main() {
vec2 uv = (gl_FragCoord.xy - u_resolution * .5) / u_resolution.yy + 0.5;
float vTime = u_time;
float t =(u_time * .2) + length(uv-.5);
vec2 uv2 = uv;
uv2 = rotateTilePattern(uv2 );
uv2 = modPolar(uv2-.5, 9. +cos(t));
uv2 = rotateTilePattern(uv2 * .5 );
vec2 uv3 = uv;
uv = rotateTilePattern(uv * .25 );
uv = modPolar(uv-.5, 5. +sin(t));
uv = rotateTilePattern(uv );
vec3 color = vec3(uv.x, uv.y, 1.);
coswarp(color, 3.);
vec3 color2 = vec3(uv2.x, uv2.y, 1.);
coswarp(color2, 3.);
color = vec3(step(color.g, .01));
color = mix(color, 1.-color, step(color2.r, .2));
color = mix( color, 1.-color, stroke(star(uv3, 6, sin(t)), .5, .5));
color = mix( color, 1.-color, stroke(star(uv3, 9, sin(t)), .3, .3));
gl_FragColor = vec4(vec3(color.r, color.g, color.b), 1.0);
}
</script>
*{ margin: 0px;}
let camera, scene, renderer, clock;
let uniforms;
function init() {
const container = document.getElementById("shader");
clock = new THREE.Clock();
camera = new THREE.Camera();
camera.position.z = 1;
scene = new THREE.Scene();
const geometry = new THREE.PlaneBufferGeometry(2, 2);
uniforms = {
u_time: { type: "f", value: 1.0 },
u_resolution: { type: "v2", value: new THREE.Vector2() },
};
const material = new THREE.ShaderMaterial({
uniforms,
vertexShader: document.getElementById("vertex").textContent,
fragmentShader: document.getElementById("fragment").textContent
});
const mesh = new THREE.Mesh(geometry, material);
scene.add(mesh);
renderer = new THREE.WebGLRenderer();
renderer.setPixelRatio(window.devicePixelRatio);
container.appendChild(renderer.domElement);
onWindowResize();
window.addEventListener("resize", onWindowResize);
}
function onWindowResize() {
renderer.setSize(window.innerWidth, window.innerHeight);
uniforms.u_resolution.value.x = renderer.domElement.width;
uniforms.u_resolution.value.y = renderer.domElement.height;
}
function render() {
uniforms.u_time.value = clock.getElapsedTime();
renderer.render(scene, camera);
}
function animate() {
render();
requestAnimationFrame(animate);
}
init();
animate();
Also see: Tab Triggers