HTML preprocessors can make writing HTML more powerful or convenient. For instance, Markdown is designed to be easier to write and read for text documents and you could write a loop in Pug.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. So you don't have access to higher-up elements like the <html>
tag. If you want to add classes there that can affect the whole document, this is the place to do it.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. If you need things in the <head>
of the document, put that code here.
The resource you are linking to is using the 'http' protocol, which may not work when the browser is using https.
CSS preprocessors help make authoring CSS easier. All of them offer things like variables and mixins to provide convenient abstractions.
It's a common practice to apply CSS to a page that styles elements such that they are consistent across all browsers. We offer two of the most popular choices: normalize.css and a reset. Or, choose Neither and nothing will be applied.
To get the best cross-browser support, it is a common practice to apply vendor prefixes to CSS properties and values that require them to work. For instance -webkit-
or -moz-
.
We offer two popular choices: Autoprefixer (which processes your CSS server-side) and -prefix-free (which applies prefixes via a script, client-side).
Any URLs added here will be added as <link>
s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.
You can apply CSS to your Pen from any stylesheet on the web. Just put a URL to it here and we'll apply it, in the order you have them, before the CSS in the Pen itself.
You can also link to another Pen here (use the .css
URL Extension) and we'll pull the CSS from that Pen and include it. If it's using a matching preprocessor, use the appropriate URL Extension and we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
JavaScript preprocessors can help make authoring JavaScript easier and more convenient.
Babel includes JSX processing.
Any URL's added here will be added as <script>
s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.
You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.
If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
Search for and use JavaScript packages from npm here. By selecting a package, an import
statement will be added to the top of the JavaScript editor for this package.
Using packages here is powered by esm.sh, which makes packages from npm not only available on a CDN, but prepares them for native JavaScript ESM usage.
All packages are different, so refer to their docs for how they work.
If you're using React / ReactDOM, make sure to turn on Babel for the JSX processing.
If active, Pens will autosave every 30 seconds after being saved once.
If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.
If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.
Visit your global Editor Settings.
<canvas id="canvas"></canvas>
body, html {
margin: 0px;
padding: 0px;
overflow: hidden;
}
$(function() {
//Indention is a bit f*d up
//Set animation frame
window.requestAnimationFrame = window.requestAnimationFrame || window.mozRequestAnimationFrame || window.webkitRequestAnimationFrame || window.msRequestAnimationFrame;
var canvas = $('#canvas')[0],
ctx = canvas.getContext('2d'),
canvasW = $(document).width(),
canvasH = $(document).height();
ctx.fillStyle = 'black';
canvas.width = canvasW;
canvas.height = canvasH;
var mouse = {
x: canvasW/2,
y: canvasH/2,
dx: 0,
dy: 0
};
var emitter = {
h: 50,
x: canvasW/2-250,
y: canvasH/2,
vx: 5,
vy: 5,
v: 0.05,
dx: 0,
dy: 0
};
var stops = [50, 150, 160, 300, 500],
stopIndex = 0,
delay = 0,
prog = 0;
var circle = {
radius: 125,
angle: 0
};
var particles = new Array();
var rate = 2,
time = 0,
frameIndex = rate;
var simplex = new SimplexNoise(),
simplexVal = 0,
simplexStart = 20;
//Start loop
draw();
//Draw
function draw() {
ctx.globalCompositeOperation = 'source-over';
ctx.fillStyle = 'rgba(0,0,0,0.5)';
ctx.fillRect(0, 0, canvasW, canvasH);
ctx.globalCompositeOperation = 'lighter';
//Draw loading
ctx.fillStyle = '#000';
ctx.fillRect(canvasW/2-250, emitter.y-emitter.h/2, 500, emitter.h);
ctx.strokeStyle = 'rgba(0,255,0,0.5)';
ctx.strokeRect(canvasW/2-250, emitter.y-emitter.h/2, 500, emitter.h);
ctx.font = '20pt Arial';
ctx.fillStyle = 'rgba(0,255,0,0.5)';
ctx.fillText(Math.floor(prog/5)+'%', canvasW/2-20, canvasH/2+10);
//Move emitter
//console.log(stops[stopIndex]+' '+prog+' '+delay);
if(stops[stopIndex] == prog) {
stopIndex ++;
delay = 50;
} else {
if(delay == 0 && prog < stops[stopIndex]) {
emitter.dx = -1;
emitter.x += 2;
prog += 2;
} else {
emitter.dx = 0;
delay --;
}
}
//Draw emitter
ctx.fillStyle = '#0f0';
ctx.fillRect(emitter.x, emitter.y-emitter.h/2, 1, emitter.h);
//Draw particles
var i = 0;
for(i in particles) {
var p = particles[i];
//Check if die
if(time > p.die) {
p.o -= 0.01;
if(p.o < 0) {
particles.splice(i, 1);
}
}
//Add v
p.x += p.vx;
p.y += p.vy;
//Add source move
p.x += p.sourcedx / 10;
p.y += p.sourcedy / 10;
//Simplex noise
if(p.simplexIndex > simplexStart) {
p.simplexVal = simplex.noise3D(p.x/100, p.y/100, time/100);
}
p.simplexIndex ++;
p.x += p.simplexVal;
p.y += p.simplexVal;
//If (almost) outside canvas
if(p.x < 0+20 || p.x > canvasW-20) {
p.vx *= -1.015;
}
if(p.y < 0+20 || p.y > canvasH-20) {
p.vy *= -1.015;
}
ctx.beginPath();
ctx.fillStyle = 'rgba(0, '+p.green+', 0, '+p.o+')';
ctx.arc(p.x, p.y, p.r, 0, 2 * Math.PI, true);
ctx.fill();
ctx.save();
}
//if emitter is moving
if(emitter.dx !== 0) {
for(var i=0; i<rate; i++) {
//Create particle
var particle = {
x: emitter.x,
y: emitter.y+(Math.random()*emitter.h-emitter.h/2),
r: Math.random()+0.5,
vx: (Math.random()*-2),
vy: (Math.random()-0.5),
o: 1,
birth: time,
die: time+(Math.random()*50+50),//1+1),
sourcedx: emitter.dx,
sourcedy: emitter.dy,
red: Math.round(Math.random()*255),
green: Math.round(Math.random()*255),
blue: Math.round(Math.random()*255),
simplexVal: 0,
simplexIndex: 0
};
particles.push(particle);
}
}
time++;
window.requestAnimationFrame(draw);
}
$(window).mousemove(function(e) {
mouse.dx = e.pageX - mouse.x;
mouse.dy = e.pageY - mouse.y;
mouse.x = e.pageX;
mouse.y = e.pageY;
});
});
/*
* A fast javascript implementation of simplex noise by Jonas Wagner
*
* Based on a speed-improved simplex noise algorithm for 2D, 3D and 4D in Java.
* Which is based on example code by Stefan Gustavson (stegu@itn.liu.se).
* With Optimisations by Peter Eastman (peastman@drizzle.stanford.edu).
* Better rank ordering method by Stefan Gustavson in 2012.
*
*
* Copyright (C) 2012 Jonas Wagner
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be
* included in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
* LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
* OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
* WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
(function () {
var F2 = 0.5 * (Math.sqrt(3.0) - 1.0),
G2 = (3.0 - Math.sqrt(3.0)) / 6.0,
F3 = 1.0 / 3.0,
G3 = 1.0 / 6.0,
F4 = (Math.sqrt(5.0) - 1.0) / 4.0,
G4 = (5.0 - Math.sqrt(5.0)) / 20.0;
function SimplexNoise(random) {
if (!random) random = Math.random;
this.p = new Uint8Array(256);
this.perm = new Uint8Array(512);
this.permMod12 = new Uint8Array(512);
for (var i = 0; i < 256; i++) {
this.p[i] = random() * 256;
}
for (i = 0; i < 512; i++) {
this.perm[i] = this.p[i & 255];
this.permMod12[i] = this.perm[i] % 12;
}
}
SimplexNoise.prototype = {
grad3: new Float32Array([1, 1, 0,
- 1, 1, 0,
1, - 1, 0,
- 1, - 1, 0,
1, 0, 1,
- 1, 0, 1,
1, 0, - 1,
- 1, 0, - 1,
0, 1, 1,
0, - 1, 1,
0, 1, - 1,
0, - 1, - 1]),
grad4: new Float32Array([0, 1, 1, 1, 0, 1, 1, - 1, 0, 1, - 1, 1, 0, 1, - 1, - 1,
0, - 1, 1, 1, 0, - 1, 1, - 1, 0, - 1, - 1, 1, 0, - 1, - 1, - 1,
1, 0, 1, 1, 1, 0, 1, - 1, 1, 0, - 1, 1, 1, 0, - 1, - 1,
- 1, 0, 1, 1, - 1, 0, 1, - 1, - 1, 0, - 1, 1, - 1, 0, - 1, - 1,
1, 1, 0, 1, 1, 1, 0, - 1, 1, - 1, 0, 1, 1, - 1, 0, - 1,
- 1, 1, 0, 1, - 1, 1, 0, - 1, - 1, - 1, 0, 1, - 1, - 1, 0, - 1,
1, 1, 1, 0, 1, 1, - 1, 0, 1, - 1, 1, 0, 1, - 1, - 1, 0,
- 1, 1, 1, 0, - 1, 1, - 1, 0, - 1, - 1, 1, 0, - 1, - 1, - 1, 0]),
noise2D: function (xin, yin) {
var permMod12 = this.permMod12,
perm = this.perm,
grad3 = this.grad3;
var n0=0, n1=0, n2=0; // Noise contributions from the three corners
// Skew the input space to determine which simplex cell we're in
var s = (xin + yin) * F2; // Hairy factor for 2D
var i = Math.floor(xin + s);
var j = Math.floor(yin + s);
var t = (i + j) * G2;
var X0 = i - t; // Unskew the cell origin back to (x,y) space
var Y0 = j - t;
var x0 = xin - X0; // The x,y distances from the cell origin
var y0 = yin - Y0;
// For the 2D case, the simplex shape is an equilateral triangle.
// Determine which simplex we are in.
var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
if (x0 > y0) {
i1 = 1;
j1 = 0;
} // lower triangle, XY order: (0,0)->(1,0)->(1,1)
else {
i1 = 0;
j1 = 1;
} // upper triangle, YX order: (0,0)->(0,1)->(1,1)
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
// c = (3-sqrt(3))/6
var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
var y1 = y0 - j1 + G2;
var x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords
var y2 = y0 - 1.0 + 2.0 * G2;
// Work out the hashed gradient indices of the three simplex corners
var ii = i & 255;
var jj = j & 255;
// Calculate the contribution from the three corners
var t0 = 0.5 - x0 * x0 - y0 * y0;
if (t0 >= 0) {
var gi0 = permMod12[ii + perm[jj]] * 3;
t0 *= t0;
n0 = t0 * t0 * (grad3[gi0] * x0 + grad3[gi0 + 1] * y0); // (x,y) of grad3 used for 2D gradient
}
var t1 = 0.5 - x1 * x1 - y1 * y1;
if (t1 >= 0) {
var gi1 = permMod12[ii + i1 + perm[jj + j1]] * 3;
t1 *= t1;
n1 = t1 * t1 * (grad3[gi1] * x1 + grad3[gi1 + 1] * y1);
}
var t2 = 0.5 - x2 * x2 - y2 * y2;
if (t2 >= 0) {
var gi2 = permMod12[ii + 1 + perm[jj + 1]] * 3;
t2 *= t2;
n2 = t2 * t2 * (grad3[gi2] * x2 + grad3[gi2 + 1] * y2);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to return values in the interval [-1,1].
return 70.0 * (n0 + n1 + n2);
},
// 3D simplex noise
noise3D: function (xin, yin, zin) {
var permMod12 = this.permMod12,
perm = this.perm,
grad3 = this.grad3;
var n0, n1, n2, n3; // Noise contributions from the four corners
// Skew the input space to determine which simplex cell we're in
var s = (xin + yin + zin) * F3; // Very nice and simple skew factor for 3D
var i = Math.floor(xin + s);
var j = Math.floor(yin + s);
var k = Math.floor(zin + s);
var t = (i + j + k) * G3;
var X0 = i - t; // Unskew the cell origin back to (x,y,z) space
var Y0 = j - t;
var Z0 = k - t;
var x0 = xin - X0; // The x,y,z distances from the cell origin
var y0 = yin - Y0;
var z0 = zin - Z0;
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
// Determine which simplex we are in.
var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
if (x0 >= y0) {
if (y0 >= z0) {
i1 = 1;
j1 = 0;
k1 = 0;
i2 = 1;
j2 = 1;
k2 = 0;
} // X Y Z order
else if (x0 >= z0) {
i1 = 1;
j1 = 0;
k1 = 0;
i2 = 1;
j2 = 0;
k2 = 1;
} // X Z Y order
else {
i1 = 0;
j1 = 0;
k1 = 1;
i2 = 1;
j2 = 0;
k2 = 1;
} // Z X Y order
}
else { // x0<y0
if (y0 < z0) {
i1 = 0;
j1 = 0;
k1 = 1;
i2 = 0;
j2 = 1;
k2 = 1;
} // Z Y X order
else if (x0 < z0) {
i1 = 0;
j1 = 1;
k1 = 0;
i2 = 0;
j2 = 1;
k2 = 1;
} // Y Z X order
else {
i1 = 0;
j1 = 1;
k1 = 0;
i2 = 1;
j2 = 1;
k2 = 0;
} // Y X Z order
}
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
// c = 1/6.
var x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
var y1 = y0 - j1 + G3;
var z1 = z0 - k1 + G3;
var x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords
var y2 = y0 - j2 + 2.0 * G3;
var z2 = z0 - k2 + 2.0 * G3;
var x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords
var y3 = y0 - 1.0 + 3.0 * G3;
var z3 = z0 - 1.0 + 3.0 * G3;
// Work out the hashed gradient indices of the four simplex corners
var ii = i & 255;
var jj = j & 255;
var kk = k & 255;
// Calculate the contribution from the four corners
var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0;
if (t0 < 0) n0 = 0.0;
else {
var gi0 = permMod12[ii + perm[jj + perm[kk]]] * 3;
t0 *= t0;
n0 = t0 * t0 * (grad3[gi0] * x0 + grad3[gi0 + 1] * y0 + grad3[gi0 + 2] * z0);
}
var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1;
if (t1 < 0) n1 = 0.0;
else {
var gi1 = permMod12[ii + i1 + perm[jj + j1 + perm[kk + k1]]] * 3;
t1 *= t1;
n1 = t1 * t1 * (grad3[gi1] * x1 + grad3[gi1 + 1] * y1 + grad3[gi1 + 2] * z1);
}
var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2;
if (t2 < 0) n2 = 0.0;
else {
var gi2 = permMod12[ii + i2 + perm[jj + j2 + perm[kk + k2]]] * 3;
t2 *= t2;
n2 = t2 * t2 * (grad3[gi2] * x2 + grad3[gi2 + 1] * y2 + grad3[gi2 + 2] * z2);
}
var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3;
if (t3 < 0) n3 = 0.0;
else {
var gi3 = permMod12[ii + 1 + perm[jj + 1 + perm[kk + 1]]] * 3;
t3 *= t3;
n3 = t3 * t3 * (grad3[gi3] * x3 + grad3[gi3 + 1] * y3 + grad3[gi3 + 2] * z3);
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to stay just inside [-1,1]
return 32.0 * (n0 + n1 + n2 + n3);
},
// 4D simplex noise, better simplex rank ordering method 2012-03-09
noise4D: function (x, y, z, w) {
var permMod12 = this.permMod12,
perm = this.perm,
grad4 = this.grad4;
var n0, n1, n2, n3, n4; // Noise contributions from the five corners
// Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
var s = (x + y + z + w) * F4; // Factor for 4D skewing
var i = Math.floor(x + s);
var j = Math.floor(y + s);
var k = Math.floor(z + s);
var l = Math.floor(w + s);
var t = (i + j + k + l) * G4; // Factor for 4D unskewing
var X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space
var Y0 = j - t;
var Z0 = k - t;
var W0 = l - t;
var x0 = x - X0; // The x,y,z,w distances from the cell origin
var y0 = y - Y0;
var z0 = z - Z0;
var w0 = w - W0;
// For the 4D case, the simplex is a 4D shape I won't even try to describe.
// To find out which of the 24 possible simplices we're in, we need to
// determine the magnitude ordering of x0, y0, z0 and w0.
// Six pair-wise comparisons are performed between each possible pair
// of the four coordinates, and the results are used to rank the numbers.
var rankx = 0;
var ranky = 0;
var rankz = 0;
var rankw = 0;
if (x0 > y0) rankx++;
else ranky++;
if (x0 > z0) rankx++;
else rankz++;
if (x0 > w0) rankx++;
else rankw++;
if (y0 > z0) ranky++;
else rankz++;
if (y0 > w0) ranky++;
else rankw++;
if (z0 > w0) rankz++;
else rankw++;
var i1, j1, k1, l1; // The integer offsets for the second simplex corner
var i2, j2, k2, l2; // The integer offsets for the third simplex corner
var i3, j3, k3, l3; // The integer offsets for the fourth simplex corner
// simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
// Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
// impossible. Only the 24 indices which have non-zero entries make any sense.
// We use a thresholding to set the coordinates in turn from the largest magnitude.
// Rank 3 denotes the largest coordinate.
i1 = rankx >= 3 ? 1 : 0;
j1 = ranky >= 3 ? 1 : 0;
k1 = rankz >= 3 ? 1 : 0;
l1 = rankw >= 3 ? 1 : 0;
// Rank 2 denotes the second largest coordinate.
i2 = rankx >= 2 ? 1 : 0;
j2 = ranky >= 2 ? 1 : 0;
k2 = rankz >= 2 ? 1 : 0;
l2 = rankw >= 2 ? 1 : 0;
// Rank 1 denotes the second smallest coordinate.
i3 = rankx >= 1 ? 1 : 0;
j3 = ranky >= 1 ? 1 : 0;
k3 = rankz >= 1 ? 1 : 0;
l3 = rankw >= 1 ? 1 : 0;
// The fifth corner has all coordinate offsets = 1, so no need to compute that.
var x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords
var y1 = y0 - j1 + G4;
var z1 = z0 - k1 + G4;
var w1 = w0 - l1 + G4;
var x2 = x0 - i2 + 2.0 * G4; // Offsets for third corner in (x,y,z,w) coords
var y2 = y0 - j2 + 2.0 * G4;
var z2 = z0 - k2 + 2.0 * G4;
var w2 = w0 - l2 + 2.0 * G4;
var x3 = x0 - i3 + 3.0 * G4; // Offsets for fourth corner in (x,y,z,w) coords
var y3 = y0 - j3 + 3.0 * G4;
var z3 = z0 - k3 + 3.0 * G4;
var w3 = w0 - l3 + 3.0 * G4;
var x4 = x0 - 1.0 + 4.0 * G4; // Offsets for last corner in (x,y,z,w) coords
var y4 = y0 - 1.0 + 4.0 * G4;
var z4 = z0 - 1.0 + 4.0 * G4;
var w4 = w0 - 1.0 + 4.0 * G4;
// Work out the hashed gradient indices of the five simplex corners
var ii = i & 255;
var jj = j & 255;
var kk = k & 255;
var ll = l & 255;
// Calculate the contribution from the five corners
var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0;
if (t0 < 0) n0 = 0.0;
else {
var gi0 = (perm[ii + perm[jj + perm[kk + perm[ll]]]] % 32) * 4;
t0 *= t0;
n0 = t0 * t0 * (grad4[gi0] * x0 + grad4[gi0 + 1] * y0 + grad4[gi0 + 2] * z0 + grad4[gi0 + 3] * w0);
}
var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1;
if (t1 < 0) n1 = 0.0;
else {
var gi1 = (perm[ii + i1 + perm[jj + j1 + perm[kk + k1 + perm[ll + l1]]]] % 32) * 4;
t1 *= t1;
n1 = t1 * t1 * (grad4[gi1] * x1 + grad4[gi1 + 1] * y1 + grad4[gi1 + 2] * z1 + grad4[gi1 + 3] * w1);
}
var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2;
if (t2 < 0) n2 = 0.0;
else {
var gi2 = (perm[ii + i2 + perm[jj + j2 + perm[kk + k2 + perm[ll + l2]]]] % 32) * 4;
t2 *= t2;
n2 = t2 * t2 * (grad4[gi2] * x2 + grad4[gi2 + 1] * y2 + grad4[gi2 + 2] * z2 + grad4[gi2 + 3] * w2);
}
var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3;
if (t3 < 0) n3 = 0.0;
else {
var gi3 = (perm[ii + i3 + perm[jj + j3 + perm[kk + k3 + perm[ll + l3]]]] % 32) * 4;
t3 *= t3;
n3 = t3 * t3 * (grad4[gi3] * x3 + grad4[gi3 + 1] * y3 + grad4[gi3 + 2] * z3 + grad4[gi3 + 3] * w3);
}
var t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4;
if (t4 < 0) n4 = 0.0;
else {
var gi4 = (perm[ii + 1 + perm[jj + 1 + perm[kk + 1 + perm[ll + 1]]]] % 32) * 4;
t4 *= t4;
n4 = t4 * t4 * (grad4[gi4] * x4 + grad4[gi4 + 1] * y4 + grad4[gi4 + 2] * z4 + grad4[gi4 + 3] * w4);
}
// Sum up and scale the result to cover the range [-1,1]
return 27.0 * (n0 + n1 + n2 + n3 + n4);
}
};
// amd
if (typeof define !== 'undefined' && define.amd) define(function(){return SimplexNoise;});
//common js
if (typeof exports !== 'undefined') exports.SimplexNoise = SimplexNoise;
// browser
else if (typeof navigator !== 'undefined') this.SimplexNoise = SimplexNoise;
// nodejs
if (typeof module !== 'undefined') {
module.exports = SimplexNoise;
}
})();
Also see: Tab Triggers