Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URLs added here will be added as <link>s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Auto Save

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                <div id="container"><canvas id="canvas"></canvas></div>
<audio id="audio" controls crossorigin></audio>
<input id="audioFileInput" type="file" accept="audio/*">
<script>
  function map(x, min, max, targetMin, targetMax) {
    return (x - min) / (max - min) * (targetMax - targetMin) + targetMin;
  }
  
  function clamp(x, min, max) {
    return Math.min(Math.max(x, min), max);
  }
  
  function idxWrapOver(x, length) {
    return (x % length + length) % length;
  }
  
  // Hz and FFT bin conversion
function hertzToFFTBin(x, y = 'round', bufferSize = 4096, sampleRate = 44100) {
  const bin = x * bufferSize / sampleRate;
  let func = y;
  
  if (!['floor','ceil','trunc'].includes(func))
    func = 'round'; // always use round if you specify an invalid/undefined value
  
  return Math[func](bin);
}

function fftBinToHertz(x, bufferSize = 4096, sampleRate = 44100) {
  return x * sampleRate / bufferSize;
}
  

// Calculate the FFT
function calcFFT(input, full = false) {
  let fft = input.map(x => x);
  let fft2 = input.map(x => x);
  transform(fft, fft2);
  let output = new Array(Math.round(fft.length/(2-full))).fill(0);
  for (let i = 0; i < output.length; i++) {
    output[i] = Math.hypot(fft[i], fft2[i])/(fft.length);
  }
  return output;
}

function calcComplexFFT(input, includeImag = false) {
  let fft = input.map(x => x*Math.sqrt(1-includeImag));
  let fft2 = input.map(x => x*includeImag);
  transform(fft, fft2);
  return input.map((_, i, arr) => {
    return {
      re: fft[i]/(arr.length/2),
      im: fft2[i]/(arr.length/2),
      magnitude: Math.hypot(fft[i], fft2[i])/(arr.length/2),
      phase: Math.atan2(fft2[i], fft[i])
    };
  });
}
  
function calcComplexInputFFT(real, imag) {
  if (real.length !== imag.length)
    return [];
  const fft1 = real.map(x => x),
        fft2 = imag.map(x => x);
  transform(fft1, fft2);
  return real.map((_, i, arr) => {
    return {
      re: fft1[i]/arr.length,
      im: fft2[i]/arr.length,
      magnitude: Math.hypot(fft1[i], fft2[i])/arr.length,
      phase: Math.atan2(fft2[i], fft1[i])
    }
  });
}
  /**
 * FFT and convolution (JavaScript)
 * 
 * Copyright (c) 2017 Project Nayuki. (MIT License)
 * https://www.nayuki.io/page/free-small-fft-in-multiple-languages
 */

/* 
 * Computes the discrete Fourier transform (DFT) of the given complex vector, storing the result back into the vector.
 * The vector can have any length. This is a wrapper function.
 */
function transform(real, imag) {
	const n = real.length;
	if (n != imag.length)
		throw "Mismatched lengths";
	if (n <= 0)
		return;
	else if ((2 ** Math.trunc(Math.log2(n))) === n)  // Is power of 2
		transformRadix2(real, imag);
	else  // More complicated algorithm for arbitrary sizes
		transformBluestein(real, imag);
}


/* 
 * Computes the inverse discrete Fourier transform (IDFT) of the given complex vector, storing the result back into the vector.
 * The vector can have any length. This is a wrapper function. This transform does not perform scaling, so the inverse is not a true inverse.
 */
function inverseTransform(real, imag) {
	transform(imag, real);
}


/* 
 * Computes the discrete Fourier transform (DFT) of the given complex vector, storing the result back into the vector.
 * The vector's length must be a power of 2. Uses the Cooley-Tukey decimation-in-time radix-2 algorithm.
 */
function transformRadix2(real, imag) {
	// Length variables
	const n = real.length;
	if (n != imag.length)
		throw "Mismatched lengths";
	if (n <= 1)  // Trivial transform
		return;
	const logN = Math.log2(n);
	if ((2 ** Math.trunc(logN)) !== n)
		throw "Length is not a power of 2";
	
	// Trigonometric tables
	let cosTable = new Array(n / 2);
	let sinTable = new Array(n / 2);
	for (let i = 0; i < n / 2; i++) {
		cosTable[i] = Math.cos(2 * Math.PI * i / n);
		sinTable[i] = Math.sin(2 * Math.PI * i / n);
	}
	
	// Bit-reversed addressing permutation
	for (let i = 0; i < n; i++) {
		let j = reverseBits(i, logN);
		if (j > i) {
			let temp = real[i];
			real[i] = real[j];
			real[j] = temp;
			temp = imag[i];
			imag[i] = imag[j];
			imag[j] = temp;
		}
	}
	
	// Cooley-Tukey decimation-in-time radix-2 FFT
	for (let size = 2; size <= n; size *= 2) {
		let halfsize = size / 2;
		let tablestep = n / size;
		for (let i = 0; i < n; i += size) {
			for (let j = i, k = 0; j < i + halfsize; j++, k += tablestep) {
				const l = j + halfsize;
				const tpre =  real[l] * cosTable[k] + imag[l] * sinTable[k];
				const tpim = -real[l] * sinTable[k] + imag[l] * cosTable[k];
				real[l] = real[j] - tpre;
				imag[l] = imag[j] - tpim;
				real[j] += tpre;
				imag[j] += tpim;
			}
		}
	}
	
	// Returns the integer whose value is the reverse of the lowest 'bits' bits of the integer 'x'.
	function reverseBits(x, bits) {
		let y = 0;
		for (let i = 0; i < bits; i++) {
			y = (y << 1) | (x & 1);
			x >>>= 1;
		}
		return y;
	}
}


/* 
 * Computes the discrete Fourier transform (DFT) of the given complex vector, storing the result back into the vector.
 * The vector can have any length. This requires the convolution function, which in turn requires the radix-2 FFT function.
 * Uses Bluestein's chirp z-transform algorithm.
 */
function transformBluestein(real, imag) {
	// Find a power-of-2 convolution length m such that m >= n * 2 + 1
	const n = real.length;
	if (n != imag.length)
		throw "Mismatched lengths";
	const m = 2 ** Math.trunc(Math.log2(n*2)+1);
	
	// Trignometric tables
	let cosTable = new Array(n);
	let sinTable = new Array(n);
	for (let i = 0; i < n; i++) {
		let j = i * i % (n * 2);  // This is more accurate than j = i * i
		cosTable[i] = Math.cos(Math.PI * j / n);
		sinTable[i] = Math.sin(Math.PI * j / n);
	}
	
	// Temporary vectors and preprocessing
	let areal = newArrayOfZeros(m);
	let aimag = newArrayOfZeros(m);
	for (let i = 0; i < n; i++) {
		areal[i] =  real[i] * cosTable[i] + imag[i] * sinTable[i];
		aimag[i] = -real[i] * sinTable[i] + imag[i] * cosTable[i];
	}
	let breal = newArrayOfZeros(m);
	let bimag = newArrayOfZeros(m);
	breal[0] = cosTable[0];
	bimag[0] = sinTable[0];
	for (let i = 1; i < n; i++) {
		breal[i] = breal[m - i] = cosTable[i];
		bimag[i] = bimag[m - i] = sinTable[i];
	}
	
	// Convolution
	let creal = new Array(m);
	let cimag = new Array(m);
	convolveComplex(areal, aimag, breal, bimag, creal, cimag);
	
	// Postprocessing
	for (let i = 0; i < n; i++) {
		real[i] =  creal[i] * cosTable[i] + cimag[i] * sinTable[i];
		imag[i] = -creal[i] * sinTable[i] + cimag[i] * cosTable[i];
	}
}


/* 
 * Computes the circular convolution of the given real vectors. Each vector's length must be the same.
 */
function convolveReal(x, y, out) {
	const n = x.length;
	if (n != y.length || n != out.length)
		throw "Mismatched lengths";
	convolveComplex(x, newArrayOfZeros(n), y, newArrayOfZeros(n), out, newArrayOfZeros(n));
}


/* 
 * Computes the circular convolution of the given complex vectors. Each vector's length must be the same.
 */
function convolveComplex(xreal, ximag, yreal, yimag, outreal, outimag) {
	const n = xreal.length;
	if (n != ximag.length || n != yreal.length || n != yimag.length
			|| n != outreal.length || n != outimag.length)
		throw "Mismatched lengths";
	
	xreal = xreal.slice();
	ximag = ximag.slice();
	yreal = yreal.slice();
	yimag = yimag.slice();
	transform(xreal, ximag);
	transform(yreal, yimag);
	
	for (let i = 0; i < n; i++) {
		const temp = xreal[i] * yreal[i] - ximag[i] * yimag[i];
		ximag[i] = ximag[i] * yreal[i] + xreal[i] * yimag[i];
		xreal[i] = temp;
	}
	inverseTransform(xreal, ximag);
	
	for (let i = 0; i < n; i++) {  // Scaling (because this FFT implementation omits it)
		outreal[i] = xreal[i] / n;
		outimag[i] = ximag[i] / n;
	}
}


function newArrayOfZeros(n) {
	let result = new Array(n).fill(0);
	return result;
}
</script>
              
            
!

CSS

              
                body {
  margin: 0;
  overflow: hidden;
}

audio {
  display: inline-block;
  width: 100%;
  height: 40px;
}

canvas {
  display: block;
  width: 100%;
}

#container {
  height: calc( 100vh - 40px );
}

#upload {
  display: none;
}
              
            
!

JS

              
                const audioCtx = new AudioContext();
const audioPlayer = document.getElementById('audio');
const localAudioElement = document.getElementById('audioFileInput');
localAudioElement.addEventListener('change', loadLocalFile);
const canvas = document.getElementById('canvas'),
      ctx = canvas.getContext('2d'),
      container = document.getElementById('container');
// necessary for spectrogram visualization
const auxCanvas = new OffscreenCanvas(0, 0),
      auxCtx = auxCanvas.getContext('2d');
// audio part
const audioSource = audioCtx.createMediaElementSource(audioPlayer);
const analyser = audioCtx.createAnalyser(),
      analyserL = audioCtx.createAnalyser(),
      analyserR = audioCtx.createAnalyser();
analyser.fftSize = 32768; // maxes out FFT size
analyserL.fftSize = analyser.fftSize;
analyserR.fftSize = analyser.fftSize;
const dataArray = new Float32Array(analyser.fftSize),
      dataArrayL = new Float32Array(analyserL.fftSize),
      dataArrayR = new Float32Array(analyserR.fftSize);
let staticSpectrogramIdx = 0;
// DelayNode (optional to mimic reaction time for non-realtime visualizations or even foobar2000 visualizations)
const delay = audioCtx.createDelay(),
      splitter = audioCtx.createChannelSplitter(2); // only work well for stereo signal, not sure how it works on the surround sound
audioSource.connect(delay);
delay.connect(audioCtx.destination);
//audioSource.connect(audioCtx.destination);
audioSource.connect(analyser);
audioSource.connect(splitter);
splitter.connect(analyserL, 0);
splitter.connect(analyserR, 1);

const visualizerSettings = {
  inputSize: 4096,
  fftSize: 4096,
  minFreq: 20,
  maxFreq: 20000,
  fscale: 'logarithmic',
  windowFunction: 'hann',
  windowParameter: 1,
  windowSkew: 0,
  useNC: false,
  ncDistance: 1,
  hzLinearFactor: 0,
  minDecibels: -90,
  maxDecibels: 0,
  useDecibels: true,
  gamma: 1,
  useAbsolute: true,
  decoupleAmplitudeFromSpectrum: false,
  altMinDecibels: -90,
  altMaxDecibels: 0,
  altUseDecibels: true,
  altGamma: 1,
  altUseAbsolute: true,
  equalizeAmount: 0,
  equalizeOffset: 44100,
  equalizeDepth: 1024,
  slope: 0,
  slopeOffset: 1000,
  weightingAmount: 0,
  weightingType: 'k',
  slopeFunctionsOffset: 1,
  channelMode: 'mono',
  treatAsComplex: false,
  freeze: false,
  // labels part
  showLabels: true,
  showLabelsY: true,
  amplitudeLabelInterval: 6,
  showDC: true,
  showNyquist: true,
  mirrorLabels: true,
  labelTextAlign: 'start',
  labelTextBaseline: 'alphabetic',
  labelTextBaseline2: 'alphabetic',
  // grid part
  showLabels2: true,
  showLabelsY2: true,
  labelMode2: 'decade',
  showDC2: true,
  showNyquist2: true,
  showBothYLabels: true,
  alternatingGridPattern: true,
  spectrogramExtendGrid: false,
  diffLabels: false,
  labelMode: 'decade',
  labelTuning: 440,
  // drawing part
  useGradient: false,
  alternateColor: false,
  drawMode: 'stroke',
  lowDetail: true,
  useBars: false,
  barSpacing: 1,
  showStrokeRectAsBars: false,
  lineWidth: 1,
  lineJoin: 'miter',
  miterLimit: 10,
  darkMode: false,
  compensateDelay: true,
  display: 'spectrum',
  clearSpectrogram: resizeCanvas
},
      drawModes = {
        'Line': 'stroke',
        'Fill': 'fill',
        'Both': 'both'
      },
      displayModes = {
        'Spectrum': 'spectrum',
        'Spectrogram': 'spectrogram',
        'Static spectrogram': 'static',
        'Spectrum and spectrogram': 'both'
      },
      windowFunctionSettings = {
        'Rectangular': 'rectangular',
        'Triangular (Bartlett)': 'triangular',
        'Quadratic': 'quadratic spline',
        'Parzen': 'parzen',
        'Welch': 'welch',
        'Power of sine': 'power of sine',
        'Power of circle': 'circle',
        'Tukey (tapered cosine)': 'tukey',
        'Vorbis': 'vorbis',
        'Cascaded sine': 'cascaded sine',
        'Hann': 'hann',
        'Hamming': 'hamming',
        'Blackman': 'blackman',
        'Nuttall': 'nuttall',
        'Flat top': 'flattop',
        'Gaussian': 'gauss',
        'Hyperbolic cosine': 'cosh',
        'Hyperbolic cosine 2': 'cosh 2',
        'Kaiser': 'kaiser',
        'Poisson': 'exponential',
        'Hyperbolic secant': 'sech',
        'Galss': 'galss', // Name derived from a particular program name (Aimp Galss Player) in Titanic Tools that pre-installed on Windows 7 Titanic Edition bootleg
        'Glizzy': 'glizzy'
      },
      fscaleSettings = {
        'Bark': 'bark',
        'ERB': 'erb',
        'Cams': 'cam',
        'Mel (AIMP)': 'mel',
        'Linear': 'linear',
        'Logarithmic': 'logarithmic',
        'Hyperbolic sine': 'sinh',
        'Shifted logarithmic': 'shifted log',
        'Nth root': 'nth root',
        'Negative exponential': 'negative exponential',
        'Adjustable Bark': 'adjustable bark',
        'Period': 'period'
        },
      labelModes = {
        'Decades': 'decade',
        'Decades (coarse)': 'decade 2',
        'Decades (without minor gridlines)': 'decade 3',
        'Octaves': 'octave',
        'Powers of two': 'powers of two',
        'Notes': 'note',
        'Critical bands': 'bark',
        'Linear': 'linear'
      },
      channelModes = {
        'Mono': 'mono',
        'Stereo': 'stereo',
        'Mid/Side': 'ms',
        'L/R and M/S': 'both'
      },
      weightingTypes = {
        'A': 'a',
        'B': 'b',
        'C': 'c',
        'D': 'd',
        'ITU-R 468': 'm',
        'K': 'k'
      },
      loader = {
        url: '',
        load: function() {
          audioPlayer.src = this.url;
          audioPlayer.play();
        },
        loadLocal: function() {
          localAudioElement.click();
        },
        toggleFullscreen: _ => {
          if (document.fullscreenElement === canvas)
            document.exitFullscreen();
          else
            canvas.requestFullscreen();
        }
      };

let gui = new dat.GUI();
gui.add(loader, 'url').name('URL');
gui.add(loader, 'load').name('Load');
gui.add(loader, 'loadLocal').name('Load from local device');
let settings = gui.addFolder('Visualization settings');
const freqDistFolder = settings.addFolder('Frequency distribution');
freqDistFolder.add(visualizerSettings, 'minFreq', 0, 96000).name('Minimum frequency'); // up to 192kHz sample rate
freqDistFolder.add(visualizerSettings, 'maxFreq', 0, 96000).name('Maximum frequency');
freqDistFolder.add(visualizerSettings, 'fscale', fscaleSettings).name('Frequency scale');
freqDistFolder.add(visualizerSettings, 'hzLinearFactor', 0, 100).name('Hz linear factor');
const transformFolder = settings.addFolder('Transform algorithm and window functions');
transformFolder.add(visualizerSettings, 'inputSize', 32, 32768, 1).name('Input size');
transformFolder.add(visualizerSettings, 'fftSize', 32, 32768, 1).name('FFT size');
transformFolder.add(visualizerSettings, 'windowFunction', windowFunctionSettings).name('Window function');
transformFolder.add(visualizerSettings, 'windowParameter', 0, 10).name('Window parameter');
transformFolder.add(visualizerSettings, 'windowSkew', -1, 1).name('Window skew');
transformFolder.add(visualizerSettings, 'useNC').name('Use NC method');
transformFolder.add(visualizerSettings, 'ncDistance', 1, 1024, 1).name('NC method distance');
const amplitudeFolder = settings.addFolder('Amplitude');
amplitudeFolder.add(visualizerSettings, 'useDecibels').name('Use logarithmic amplitude/decibel scale');
amplitudeFolder.add(visualizerSettings, 'useAbsolute').name('Use absolute value');
amplitudeFolder.add(visualizerSettings, 'gamma', 0.5, 10).name('Gamma');
amplitudeFolder.add(visualizerSettings, 'minDecibels', -120, 6).name('Lower amplitude range');
amplitudeFolder.add(visualizerSettings, 'maxDecibels', -120, 6).name('Higher amplitude range');
amplitudeFolder.add(visualizerSettings, 'decoupleAmplitudeFromSpectrum').name('Decouple amplitude scaling of spectrogram from spectrum');
const altAmplitudeFolder = amplitudeFolder.addFolder('Spectrogram colormap scaling');
altAmplitudeFolder.add(visualizerSettings, 'altUseDecibels').name('Use logarithmic amplitude/decibel scale');
altAmplitudeFolder.add(visualizerSettings, 'altUseAbsolute').name('Use absolute value');
altAmplitudeFolder.add(visualizerSettings, 'altGamma', 0.5, 10).name('Gamma');
altAmplitudeFolder.add(visualizerSettings, 'altMinDecibels', -120, 6).name('Lower amplitude range');
altAmplitudeFolder.add(visualizerSettings, 'altMaxDecibels', -120, 6).name('Higher amplitude range');
const weightingFolder = amplitudeFolder.addFolder('Frequency weighting');
weightingFolder.add(visualizerSettings, 'slope', -12, 12).name('Frequency slope (dB per-octave)');
weightingFolder.add(visualizerSettings, 'slopeOffset', 0, 96000).name('Slope offset (Hz = 0dB)');
weightingFolder.add(visualizerSettings, 'equalizeAmount', -12, 12).name('Equalize amount');
weightingFolder.add(visualizerSettings, 'equalizeOffset', 0, 96000).name('Equalize offset');
weightingFolder.add(visualizerSettings, 'equalizeDepth', 0, 96000).name('Equalize depth');
weightingFolder.add(visualizerSettings, 'weightingAmount', -100, 100).name('Weighting amount');
weightingFolder.add(visualizerSettings, 'weightingType', weightingTypes).name('Weighting type');
weightingFolder.add(visualizerSettings, 'slopeFunctionsOffset', 0, 8).name('Slope functions offset (offset by sample rate/FFT size in samples)');
const channelFolder = settings.addFolder('Channel configuration');
channelFolder.add(visualizerSettings, 'channelMode', channelModes).name('Channel mode');
channelFolder.add(visualizerSettings, 'treatAsComplex').name('Treat channel pairs as complex input');
const labelFolder = settings.addFolder('Labels and grid');
labelFolder.add(visualizerSettings, 'showLabels').name('Show horizontal-axis labels');
labelFolder.add(visualizerSettings, 'showLabels2').name('Show horizontal-axis grid');
labelFolder.add(visualizerSettings, 'showLabelsY').name('Show vertical-axis labels');
labelFolder.add(visualizerSettings, 'showLabelsY2').name('Show vertical-axis grid');
labelFolder.add(visualizerSettings, 'amplitudeLabelInterval', 0.5, 48).name('dB label interval');
labelFolder.add(visualizerSettings, 'showDC').name('Show DC label');
labelFolder.add(visualizerSettings, 'showNyquist').name('Show Nyquist frequency label');
labelFolder.add(visualizerSettings, 'showDC2').name('Show DC line');
labelFolder.add(visualizerSettings, 'showNyquist2').name('Show Nyquist frequency line');
labelFolder.add(visualizerSettings, 'mirrorLabels').name('Mirror Y-axis labels');
labelFolder.add(visualizerSettings, 'showBothYLabels').name('Show Y-axis labels on both sides instead of one side only');
labelFolder.add(visualizerSettings, 'alternatingGridPattern').name('Use alternating pattern for Y-axis grid');
labelFolder.add(visualizerSettings, 'spectrogramExtendGrid').name('Extend spectrogram gridlines into screen size');
labelFolder.add(visualizerSettings, 'labelTextAlign', {
  'Start': 'start',
  'Center': 'center',
  'End': 'end'
}).name('Frequency label text alignment');
labelFolder.add(visualizerSettings, 'labelTextBaseline', {
  'Alphabetic': 'alphabetic',
  'Middle': 'middle',
  'Hanging': 'hanging'
}).name('dB label text alignment');
labelFolder.add(visualizerSettings, 'labelTextBaseline2', {
  'Alphabetic': 'alphabetic',
  'Middle': 'middle',
  'Hanging': 'hanging'
}).name('Spectrogram frequency label text alignment');
labelFolder.add(visualizerSettings, 'diffLabels').name('Use difference coloring for labels');
//labelFolder.add(visualizerSettings, 'noteLabels').name('Note labels');
labelFolder.add(visualizerSettings, 'labelMode', labelModes).name('Frequency label mode');
labelFolder.add(visualizerSettings, 'labelMode2', labelModes).name('Frequency grid mode');
labelFolder.add(visualizerSettings, 'labelTuning', 0, 96000).name('Note labels tuning (nearest note = tuning frequency in Hz)');
const appearanceFolder = settings.addFolder('Appearance');
appearanceFolder.add(visualizerSettings, 'display', displayModes).name('Display which').onChange(resizeCanvas);
appearanceFolder.add(visualizerSettings, 'clearSpectrogram').name('Reset spectrogram display');
appearanceFolder.add(visualizerSettings, 'alternateColor').name('Use alternate channel color');
appearanceFolder.add(visualizerSettings, 'useGradient').name('Use color gradient');
appearanceFolder.add(visualizerSettings, 'drawMode', drawModes).name('Draw mode');
appearanceFolder.add(visualizerSettings, 'lineWidth', 0.5, 10).name('Line width');
appearanceFolder.add(visualizerSettings, 'lineJoin', {
  'Miter': 'miter',
  'Round': 'round',
  'Bevel': 'bevel'
}).name('Line join');
appearanceFolder.add(visualizerSettings, 'miterLimit', 1, 100).name('Line miter limit');
appearanceFolder.add(visualizerSettings, 'lowDetail').name('Low detail mode');
appearanceFolder.add(visualizerSettings, 'useBars').name('Draw bars instead of lines');
appearanceFolder.add(visualizerSettings, 'barSpacing', 0, 1024).name('Bar spacing');
appearanceFolder.add(visualizerSettings, 'showStrokeRectAsBars').name('Show stroke rect as stroke bars instead of cap');
appearanceFolder.add(visualizerSettings, 'darkMode').name('Dark mode');
settings.add(visualizerSettings, 'freeze').name('Freeze analyser');
settings.add(visualizerSettings, 'compensateDelay').name('Delay compensation');
gui.add(loader, 'toggleFullscreen').name('Toggle fullscreen mode');

function resizeCanvas() {
  const scale = devicePixelRatio,
        isFullscreen = document.fullscreenElement === canvas;
  canvas.width = (isFullscreen ? innerWidth : container.clientWidth)*scale;
  canvas.height = (isFullscreen ? innerHeight : container.clientHeight)*scale;
  auxCanvas.width = canvas.width;
  auxCanvas.height = visualizerSettings.display === 'both' ? Math.trunc(canvas.height/2) : canvas.height;
  staticSpectrogramIdx = 0;
}

addEventListener('click', () => {
  if (audioCtx.state == 'suspended')
    audioCtx.resume();
});
addEventListener('resize', resizeCanvas);
resizeCanvas();

function loadLocalFile(event) {
  const file = event.target.files[0],
        reader = new FileReader();
  reader.onload = (e) => {
    audioPlayer.src = e.target.result;
    audioPlayer.play();
  };

  reader.readAsDataURL(file);
}
const test = map(0, 0, 1, -1, 1); // Smoke testing
visualize();
function visualize() {
  delay.delayTime.value = visualizerSettings.inputSize/audioCtx.sampleRate * visualizerSettings.compensateDelay;
  // Visualization part
  if (!visualizerSettings.freeze) {
    analyser.getFloatTimeDomainData(dataArray);
    if (visualizerSettings.mode !== 'mono') {
      analyserL.getFloatTimeDomainData(dataArrayL);
      analyserR.getFloatTimeDomainData(dataArrayR);
    }
  }
  const fftData = new Array(visualizerSettings.fftSize).fill(0),
        fftData1 = Array.from(fftData),
        fftData2 = Array.from(fftData),
        fftData3 = Array.from(fftData),
        fftData4 = Array.from(fftData);
  let norm = 0,
      spectrum0,
      spectrum1,
      spectrum2,
      spectrum3,
      spectrum4;
  for (let i = 0; i < visualizerSettings.inputSize; i++) {
    const x = map(i, 0, visualizerSettings.inputSize, -1, 1),
          w = applyWindow(x, visualizerSettings.windowFunction, visualizerSettings.windowParameter, true, visualizerSettings.windowSkew),
          magnitude = dataArray[i+analyser.fftSize-visualizerSettings.inputSize],
          l = dataArrayL[i+analyserL.fftSize-visualizerSettings.inputSize],
          r = dataArrayR[i+analyserR.fftSize-visualizerSettings.inputSize],
          m = (l+r)/2,
          s = (l-r)/2;
    norm += w;
    fftData[idxWrapOver(i, fftData.length)] += magnitude * w;
    fftData1[idxWrapOver(i, fftData1.length)] += l * w;
    fftData2[idxWrapOver(i, fftData2.length)] += r * w;
    fftData3[idxWrapOver(i, fftData3.length)] += m * w;
    fftData4[idxWrapOver(i, fftData4.length)] += s * w;
  }
  
  const isMono = visualizerSettings.channelMode !== 'stereo' && visualizerSettings.channelMode !== 'ms' && visualizerSettings.channelMode !== 'both',
        bgColor = visualizerSettings.darkMode ? (!visualizerSettings.alternateColor && isMono ? '#202020' : '#000') : '#fff',
        fgColor = visualizerSettings.darkMode ? (!visualizerSettings.alternateColor && isMono ? '#c0c0c0' : '#fff') : '#000',
        cL = 'rgb(79, 129, 189)',
        cR = 'rgb(192, 80, 77)',
        cM = 'rgb(155, 187, 87)',
        cS = 'rgb(128, 100, 162)',
        isSpectrogramOnly = visualizerSettings.display === 'spectrogram' || visualizerSettings.display === 'static',
        isSpectrogram = visualizerSettings.display === 'spectrogram' || visualizerSettings.display === 'both' || visualizerSettings.display === 'static',
        isSpectrumandSpectrogram = visualizerSettings.display === 'both',
        ncDistance = visualizerSettings.ncDistance,
        useNC = visualizerSettings.useNC,
        altAmplitude = visualizerSettings.decoupleAmplitudeFromSpectrum;
  auxCtx.imageSmoothingEnabled = false;
  ctx.globalCompositeOperation = 'source-over';
  ctx.fillStyle = bgColor;
  ctx.strokeStyle = bgColor;
  ctx.fillRect(0, 0, canvas.width, canvas.height);
  ctx.lineWidth = visualizerSettings.lineWidth;
  ctx.lineJoin = visualizerSettings.lineJoin;
  ctx.miterLimit = visualizerSettings.miterLimit;
  switch(visualizerSettings.channelMode) {
    case 'stereo':
    case 'ms':
    case 'both':
      const isAlternate = visualizerSettings.alternateColor,
      color1 = isAlternate ? cM : cL,
      color2 = isAlternate ? cS : cR,
      color3 = visualizerSettings.channelMode === 'ms' ? color1 : isAlternate ? cL : cM,
      color4 = visualizerSettings.channelMode === 'ms' ? color2 : isAlternate ? cR : cS,
      isComplex = visualizerSettings.treatAsComplex;
      ctx.globalCompositeOperation = visualizerSettings.darkMode ? 'lighten': 'darken';
      if (visualizerSettings.channelMode === 'stereo' || visualizerSettings.channelMode === 'both') {
        let value1 = fftData1.map(x => x*fftData1.length/norm*Math.SQRT2),
            value2 = fftData2.map(x => x*fftData2.length/norm*Math.SQRT2);
        if (isComplex) {
          const complexSpectrum = calcComplexInputFFT(value1, value2),
                ncSpectrum = useNC ? ncMethod(complexSpectrum, ncDistance) : [];
          spectrum1 = new Array(complexSpectrum.length);
          spectrum2 = new Array(complexSpectrum.length);
          for (let i = 0; i < complexSpectrum.length; i++) {
            const j = complexSpectrum.length-i;
            spectrum1[i] = useNC ? ncSpectrum[idxWrapOver(i, ncSpectrum.length)] : complexSpectrum[idxWrapOver(i, complexSpectrum.length)].magnitude;
            spectrum2[i] = useNC ? ncSpectrum[idxWrapOver(j, ncSpectrum.length)] : complexSpectrum[idxWrapOver(j, complexSpectrum.length)].magnitude;
          }
        }
        else {
          if (useNC) {
            const temp1 = calcComplexFFT(value1),
                  temp2 = calcComplexFFT(value2);
            spectrum1 = ncMethod(temp1, ncDistance);
            spectrum2 = ncMethod(temp2, ncDistance);
          }
          else {
            spectrum1 = calcFFT(value1, true),
            spectrum2 = calcFFT(value2, true);
          }
        }
        ctx.fillStyle = color1;
        ctx.strokeStyle = color1;
        if (!isSpectrogramOnly)
          drawSpectrum(spectrum1, fftData1.length, isSpectrumandSpectrogram);
        ctx.fillStyle = color2;
        ctx.strokeStyle = color2;
        if (!isSpectrogramOnly)
          drawSpectrum(spectrum2, fftData2.length, isSpectrumandSpectrogram);
      }
      if (visualizerSettings.channelMode === 'ms' || visualizerSettings.channelMode === 'both') {
        let value3 = fftData3.map(x => x*fftData3.length/norm*Math.SQRT2),
            value4 = fftData4.map(x => x*fftData4.length/norm*Math.SQRT2);
        if (isComplex) {
          const complexSpectrum = calcComplexInputFFT(value3, value4),
                ncSpectrum = useNC ? ncMethod(complexSpectrum, ncDistance) : [];
          spectrum3 = new Array(complexSpectrum.length);
          spectrum4 = new Array(complexSpectrum.length);
          for (let i = 0; i < complexSpectrum.length; i++) {
            const j = complexSpectrum.length-i;
            spectrum3[i] = useNC ? ncSpectrum[idxWrapOver(i, ncSpectrum.length)] : complexSpectrum[idxWrapOver(i, complexSpectrum.length)].magnitude;
            spectrum4[i] = useNC ? ncSpectrum[idxWrapOver(j, ncSpectrum.length)] : complexSpectrum[idxWrapOver(j, complexSpectrum.length)].magnitude;
          }
        }
        else {
          if (useNC) {
            const temp1 = calcComplexFFT(value3),
                  temp2 = calcComplexFFT(value4);
            spectrum3 = ncMethod(temp1, ncDistance);
            spectrum4 = ncMethod(temp2, ncDistance);
          }
          else {
            spectrum3 = calcFFT(value3, true),
            spectrum4 = calcFFT(value4, true);
          }
        }
        ctx.fillStyle = color3;
        ctx.strokeStyle = color3;
        if (!isSpectrogramOnly)
          drawSpectrum(spectrum3, fftData1.length, isSpectrumandSpectrogram);
        ctx.fillStyle = color4;
        ctx.strokeStyle = color4;
        if (!isSpectrogramOnly)
          drawSpectrum(spectrum4, fftData2.length, isSpectrumandSpectrogram);
      }
      break;
    default:
      if (useNC)
        spectrum0 = ncMethod(calcComplexFFT(fftData.map(x => x*fftData.length/norm*Math.SQRT2)), ncDistance);
      else
        spectrum0 = calcFFT(fftData.map(x => x*fftData.length/norm*Math.SQRT2), true);
      if (visualizerSettings.useGradient) {
        const grad = ctx.createLinearGradient(0, 0, 0, canvas.height);
        grad.addColorStop(0, visualizerSettings.darkMode ? (visualizerSettings.alternateColor ? 'rgb(0, 128, 255)' : '#569cd6'): (visualizerSettings.alternateColor ? '#008' : 'rgb(0, 102, 204)'));
        grad.addColorStop(1/(1+isSpectrumandSpectrogram), visualizerSettings.darkMode ? (visualizerSettings.alternateColor ? '#fff' : '#c0c0c0') : '#000');
        ctx.fillStyle = grad;
        ctx.strokeStyle = grad;
      }
      else {
        ctx.fillStyle = fgColor;
        ctx.strokeStyle = fgColor;
      }
      if (!isSpectrogramOnly)
        drawSpectrum(spectrum0, fftData.length, isSpectrumandSpectrogram);
  }
  
  if (isSpectrogram) {
    ctx.globalCompositeOperation = 'source-over';
    const spectrogramBars = generateBarData(isSpectrumandSpectrogram ? auxCanvas.width : auxCanvas.height, fftData.length, audioCtx.sampleRate);
    for (let i = 0; i < spectrogramBars.length; i++) {
      let value = 0,
          value1 = 0,
          value2 = 0,
          value3 = 0,
          value4 = 0;
      for (let idx = spectrogramBars[i].lo; idx <= spectrogramBars[i].hi; idx++) {
        const binIdx = idxWrapOver(idx, fftData.length);
        if (spectrum0 !== undefined)
          value = Math.max(value, spectrum0[binIdx]*weightSpectrumAtFreq(fftBinToHertz(idx + visualizerSettings.slopeFunctionsOffset, spectrum0.length, audioCtx.sampleRate)));
        if (spectrum1 !== undefined)
          value1 = Math.max(value1, spectrum1[binIdx]*weightSpectrumAtFreq(fftBinToHertz(idx + visualizerSettings.slopeFunctionsOffset, spectrum1.length, audioCtx.sampleRate)));
        if (spectrum2 !== undefined)
          value2 = Math.max(value2, spectrum2[binIdx]*weightSpectrumAtFreq(fftBinToHertz(idx + visualizerSettings.slopeFunctionsOffset, spectrum2.length, audioCtx.sampleRate)));
        if (spectrum3 !== undefined)
          value3 = Math.max(value3, spectrum3[binIdx]*weightSpectrumAtFreq(fftBinToHertz(idx + visualizerSettings.slopeFunctionsOffset, spectrum3.length, audioCtx.sampleRate)));
        if (spectrum4 !== undefined)
          value4 = Math.max(value4, spectrum4[binIdx]*weightSpectrumAtFreq(fftBinToHertz(idx + visualizerSettings.slopeFunctionsOffset, spectrum4.length, audioCtx.sampleRate)));
      }
      let color;
      const darkMode = visualizerSettings.darkMode;
      switch(visualizerSettings.channelMode) {
        case 'stereo':
        case 'ms':
        case 'both':
          const mag1 = spectrum1 !== undefined ? ascale(value1, altAmplitude) : 0,
                mag2 = spectrum2 !== undefined ? ascale(value2, altAmplitude) : 0,
                mag3 = spectrum3 !== undefined ? ascale(value3, altAmplitude) : 0,
                mag4 = spectrum4 !== undefined ? ascale(value4, altAmplitude) : 0,
                sign = visualizerSettings.darkMode * 2 - 1,
                isMSOnly = visualizerSettings.channelMode === 'ms',
                isAlternate = visualizerSettings.alternateColor,
                compliment1 = (isMSOnly && !isAlternate) || (!isMSOnly && isAlternate) ? mag3 : mag1,
                compliment2 = (isMSOnly && !isAlternate) || (!isMSOnly && isAlternate) ? mag4 : mag2,
                compliment3 = (isMSOnly && !isAlternate) || (!isMSOnly && isAlternate) ? mag1 : mag3,
                compliment4 = (isMSOnly && !isAlternate) || (!isMSOnly && isAlternate) ? mag2 : mag4,
                mathFunc = darkMode ? 'max' : 'min',
                colors = [
                  {
                    r: 79,
                    g: 129,
                    b: 189
                  },
                  {
                    r: 192,
                    g: 80,
                    b: 77
                  },
                  {
                    r: 155,
                    g: 187,
                    b: 67
                  },
                  {
                    r: 128,
                    g: 100,
                    b: 162
                  }
                ],
                background = 255 * (!darkMode),
                colorFunc = (x, y) => map(x, 0, 1, background, y);
          color = calcRGB(
            Math[mathFunc](background, colorFunc(compliment1, colors[0].r), colorFunc(compliment2, colors[1].r), colorFunc(compliment3, colors[2].r), colorFunc(compliment4, colors[3].r) ),
            Math[mathFunc](background, colorFunc(compliment1, colors[0].g), colorFunc(compliment2, colors[1].g), colorFunc(compliment3, colors[2].g), colorFunc(compliment4, colors[3].g) ),
            Math[mathFunc](background, colorFunc(compliment1, colors[0].b), colorFunc(compliment2, colors[1].b), colorFunc(compliment3, colors[2].b), colorFunc(compliment4, colors[3].b) )
          );
          break;
        default:
          const mag = ascale(value, altAmplitude),
                bg = 32 * (!visualizerSettings.alternateColor && darkMode);
          if (visualizerSettings.useGradient) {
            const colors = [
              // foobar2000 color scheme
              {
                r: visualizerSettings.alternateColor ? 0 : 0,
                g: visualizerSettings.alternateColor ? 0 : 102,
                b: visualizerSettings.alternateColor ? 136 : 204
              },
              // for dark mode in DUI
              {
                r: visualizerSettings.alternateColor ? 0 : 86,
                g: visualizerSettings.alternateColor ? 128 : 156,
                b: visualizerSettings.alternateColor ? 255 : 214
              }
            ],
                  foreground = (visualizerSettings.alternateColor ? 255 : 192) * darkMode,
                  halfway = mag > 0.5;
            color = calcRGB(
              map(mag, halfway/2, halfway/2+0.5, halfway ? colors[darkMode*1].r + bg : 255*(!darkMode) + bg, halfway ? foreground : colors[darkMode*1].r + bg),
              map(mag, halfway/2, halfway/2+0.5, halfway ? colors[darkMode*1].g + bg : 255*(!darkMode) + bg, halfway ? foreground : colors[darkMode*1].g + bg),
              map(mag, halfway/2, halfway/2+0.5, halfway ? colors[darkMode*1].b + bg : 255*(!darkMode) + bg, halfway ? foreground : colors[darkMode*1].b + bg)
            );
          }
          else
            color = calcRGB(mag*255*(darkMode*2-1) + 255 * (!darkMode) + bg, mag*255*(darkMode*2-1) + 255 * (!darkMode) + bg, mag*255*(darkMode*2-1) + 255 * (!darkMode) + bg);
      }
      const r = color.r,
            g = color.g,
            b = color.b,
            segmentStart = isNaN(spectrogramBars[i].start) ? 0 : clamp(spectrogramBars[i].start, 0, isSpectrumandSpectrogram ? auxCanvas.width : auxCanvas.height),
            segmentEnd = isNaN(spectrogramBars[i].end) ? 0 : clamp(spectrogramBars[i].end, 0, isSpectrumandSpectrogram ? auxCanvas.width : auxCanvas.height),
            pos = segmentStart,
            delta = segmentEnd - segmentStart;
      auxCtx.fillStyle = `rgb(${r}, ${g}, ${b})`;
      auxCtx.fillRect(pos * isSpectrumandSpectrogram + (visualizerSettings.display === 'static' ? staticSpectrogramIdx : (auxCanvas.width-1)) * isSpectrogramOnly, (auxCanvas.height - pos) * isSpectrogramOnly, delta * isSpectrumandSpectrogram + 1 * isSpectrogramOnly, -delta * isSpectrogramOnly + 1 * isSpectrumandSpectrogram);
    }
    if (auxCanvas.width > 0 && auxCanvas.height > 0)
      auxCtx.drawImage(auxCanvas, -1 * isSpectrogramOnly * (visualizerSettings.display !== 'static'), 1 * isSpectrumandSpectrogram);
    ctx.fillStyle = bgColor;
    ctx.fillRect(canvas.width-auxCanvas.width, canvas.height-auxCanvas.height, auxCanvas.width, auxCanvas.height);
    if (auxCanvas.width > 0 && auxCanvas.height > 0)
      ctx.drawImage(auxCanvas, 0, canvas.height-auxCanvas.height);
    
    if (visualizerSettings.display === 'static')
      staticSpectrogramIdx = idxWrapOver(staticSpectrogramIdx+1, auxCanvas.width);
  }
  
  ctx.globalCompositeOperation = visualizerSettings.diffLabels ? 'difference' : 'source-over';
  // label part
  ctx.lineWidth = 1;
  ctx.lineJoin = 'miter';
  ctx.miterLimit = 10;
  ctx.fillStyle = visualizerSettings.diffLabels ? '#fff' : fgColor;
  ctx.strokeStyle = visualizerSettings.diffLabels ? '#fff' : fgColor;
  ctx.font = `${Math.trunc(10*devicePixelRatio)}px sans-serif`;
  ctx.textAlign = visualizerSettings.labelTextAlign //isSpectrumandSpectrogram ? 'center' : 'start';
  ctx.textBaseline = isSpectrogram ? visualizerSettings.labelTextBaseline2 : 'alphabetic' //isSpectrumandSpectrogram ? 'middle' : 'alphabetic';
  // Frequency label part
  if (visualizerSettings.showLabels || visualizerSettings.showDC || visualizerSettings.showNyquist || visualizerSettings.showLabels ||
      visualizerSettings.showLabels2 || visualizerSettings.showDC2 || visualizerSettings.showNyquist2 || visualizerSettings.showLabels2) {
    ctx.globalAlpha = 0.5;
    ctx.setLineDash([]);
    const freqLabels = getFreqGridTable(visualizerSettings.showLabels, visualizerSettings.labelMode, visualizerSettings.showDC, visualizerSettings.showNyquist),
          freqLines = getFreqGridTable(visualizerSettings.showLabels2, visualizerSettings.labelMode2, visualizerSettings.showDC2, visualizerSettings.showNyquist2),
          notes = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B'],
          isNote = visualizerSettings.labelMode === 'note',
          isNote2 = visualizerSettings.labelMode2 === 'note';
    freqLabels.map(x => {
      const note = isFinite(Math.log2(x)) ? notes[idxWrapOver(Math.round(Math.log2(x)*12), notes.length)] : 'DC',
      isSharp = note.includes('#'),
      isC = note === 'C',
      isFirstFreq = x === 0,
      isLastFreq = x === audioCtx.sampleRate/2 && visualizerSettings.showNyquist;
      
      const label = isLastFreq ? 'Nyquist' : isNote || isFirstFreq ? `${note}${isC ? Math.trunc(Math.log2(x)-4) : ''}` : (x >= 1000) ? `${x / 1000}kHz` : `${x}Hz`,
            posX = map(fscale(x, visualizerSettings.fscale, visualizerSettings.hzLinearFactor/100), fscale(visualizerSettings.minFreq, visualizerSettings.fscale, visualizerSettings.hzLinearFactor/100), fscale(visualizerSettings.maxFreq, visualizerSettings.fscale, visualizerSettings.hzLinearFactor/100), canvas.height * isSpectrogramOnly, canvas.width * (!isSpectrogramOnly));
      
      ctx.globalAlpha = 1;
      
      if (isSpectrogramOnly)
        ctx.textAlign = visualizerSettings.mirrorLabels ? 'end' : 'start';
      ctx.fillText(label, posX * (!isSpectrogramOnly) + isSpectrogramOnly * canvas.width * visualizerSettings.mirrorLabels, isSpectrogramOnly ? posX : canvas.height / (1+isSpectrumandSpectrogram));
      if (visualizerSettings.showBothYLabels && isSpectrogramOnly) {
        ctx.textAlign = !visualizerSettings.mirrorLabels ? 'end' : 'start';
        ctx.fillText(label, canvas.width * (!visualizerSettings.mirrorLabels), posX);
      }
    });
    
    freqLines.map(x => {
      const note = isFinite(Math.log2(x)) ? notes[idxWrapOver(Math.round(Math.log2(x)*12), notes.length)] : 'DC',
      isSharp = note.includes('#'),
      isC = note === 'C',
      isFirstFreq = x === 0,
      isLastFreq = x === audioCtx.sampleRate/2 && visualizerSettings.showNyquist2;
      
      ctx.globalAlpha = isLastFreq || isFirstFreq ? 1 : isNote2 ? (isSharp ? 0.2 : isC ? 0.8 : 0.5) : 0.5;
      const posX = map(fscale(x, visualizerSettings.fscale, visualizerSettings.hzLinearFactor/100), fscale(visualizerSettings.minFreq, visualizerSettings.fscale, visualizerSettings.hzLinearFactor/100), fscale(visualizerSettings.maxFreq, visualizerSettings.fscale, visualizerSettings.hzLinearFactor/100), canvas.height * isSpectrogramOnly, canvas.width * (!isSpectrogramOnly)),
            lineWidth = 10*devicePixelRatio*ctx.globalAlpha;
      ctx.globalAlpha = (isSpectrogramOnly ? !visualizerSettings.spectrogramExtendGrid : false) ? 1 : ctx.globalAlpha;
      ctx.beginPath();
      ctx.lineTo(isSpectrogramOnly ? visualizerSettings.spectrogramExtendGrid ? 0 : canvas.width * visualizerSettings.mirrorLabels : posX, isSpectrogramOnly ? posX : canvas.height/(1+isSpectrumandSpectrogram));
      ctx.lineTo(isSpectrogramOnly ? visualizerSettings.spectrogramExtendGrid ? canvas.width : canvas.width * visualizerSettings.mirrorLabels + lineWidth * (1-visualizerSettings.mirrorLabels*2) : posX, isSpectrogramOnly ? posX : 0);
      ctx.stroke();
      if (visualizerSettings.showBothYLabels && isSpectrogramOnly && !visualizerSettings.spectrogramExtendGrid) {
        ctx.beginPath();
        ctx.lineTo(canvas.width * (!visualizerSettings.mirrorLabels), posX);
        ctx.lineTo(canvas.width * (!visualizerSettings.mirrorLabels) + lineWidth * (1-(!visualizerSettings.mirrorLabels)*2), posX);
        ctx.stroke();
      }
    });
    
    ctx.setLineDash([]);
    ctx.globalAlpha = 1;
    ctx.textAlign = 'start';
    ctx.textBaseline = 'alphabetic';
  }
  
  // Amplitude/decibel label part
  if ((visualizerSettings.showLabelsY || visualizerSettings.showLabelsY2) && !isSpectrogramOnly) {
    const dBLabelData = [-Infinity],
          mindB = Math.min(visualizerSettings.minDecibels, visualizerSettings.maxDecibels),
          maxdB = Math.max(visualizerSettings.minDecibels, visualizerSettings.maxDecibels),
          minLabelIdx = Math.round(mindB/visualizerSettings.amplitudeLabelInterval),
          maxLabelIdx = Math.round(maxdB/visualizerSettings.amplitudeLabelInterval);
    
    if (isFinite(minLabelIdx) && isFinite(maxLabelIdx)) {
      for (let i = maxLabelIdx; i >= minLabelIdx; i--) {
        dBLabelData.push({
          data: i*visualizerSettings.amplitudeLabelInterval,
          pattern: idxWrapOver(i, 2)
        });
      }
    }
    ctx.globalAlpha = 0.5;
    ctx.setLineDash([]);
    dBLabelData.map(i => {
      const x = i.data,
            label = `${x}dB`,
            posY = map(ascale(10 ** (x/20)), 0, 1, canvas.height/(1+isSpectrumandSpectrogram), 0);
      ctx.textBaseline = visualizerSettings.labelTextBaseline;
      if (posY <= canvas.height/2 || !isSpectrumandSpectrogram) {
        if (visualizerSettings.showLabelsY2) {
          ctx.globalAlpha = 0.5;
          if (visualizerSettings.alternatingGridPattern) {
            if (i.pattern)
              ctx.setLineDash([4,4]);
            else
              ctx.setLineDash([]);
          }
          ctx.beginPath();
          ctx.lineTo(0, posY);
          ctx.lineTo(canvas.width, posY);
          ctx.stroke();
        }
        if (visualizerSettings.showLabelsY) {
          ctx.globalAlpha = 1;
          ctx.textAlign = visualizerSettings.mirrorLabels ? 'end' : 'start';
          ctx.fillText(label, canvas.width * visualizerSettings.mirrorLabels, posY);
          if (visualizerSettings.showBothYLabels) {
            ctx.textAlign = !visualizerSettings.mirrorLabels ? 'end' : 'start';
            ctx.fillText(label, canvas.width * (!visualizerSettings.mirrorLabels), posY);
          }
        }
      }
    });
    ctx.setLineDash([]);
    ctx.globalAlpha = 1;
    ctx.textAlign = 'start';
    ctx.textBaseline = 'alphabetic';
  }
  requestAnimationFrame(visualize);
}

function generateBarData(size = 1920, length = 4800, sampleRate = 48000) {
  const isReversed = visualizerSettings.minFreq > visualizerSettings.maxFreq,
        minRange = hertzToFFTBin(visualizerSettings.minFreq, isReversed ? 'ceil' : 'floor', length, sampleRate),
        maxRange = hertzToFFTBin(visualizerSettings.maxFreq, isReversed ? 'floor' : 'ceil', length, sampleRate),
        spectrogramBars = [];
  for (let i = Math.min(minRange, maxRange); i <= Math.max(minRange, maxRange); i++) {
    const lowerBound = map(fscale(fftBinToHertz(i-0.5, length, sampleRate), visualizerSettings.fscale, visualizerSettings.hzLinearFactor/100), fscale(visualizerSettings.minFreq, visualizerSettings.fscale, visualizerSettings.hzLinearFactor/100), fscale(visualizerSettings.maxFreq, visualizerSettings.fscale, visualizerSettings.hzLinearFactor/100), 0, 1),
          higherBound = map(fscale(fftBinToHertz(i+0.5, length, sampleRate), visualizerSettings.fscale, visualizerSettings.hzLinearFactor/100), fscale(visualizerSettings.minFreq, visualizerSettings.fscale, visualizerSettings.hzLinearFactor/100), fscale(visualizerSettings.maxFreq, visualizerSettings.fscale, visualizerSettings.hzLinearFactor/100), 0, 1),
          lowerVisible = clamp(Math.round(lowerBound * size), 0, size),
          higherVisible = clamp(Math.round(higherBound * size), 0, size);
    
    if (lowerVisible !== higherVisible) {
      spectrogramBars.push({
        lo: i,
        hi: i,
        start: lowerVisible,
        end: higherVisible
      });
    }
    else if (spectrogramBars.length > 0) {
      const lastBin = spectrogramBars[spectrogramBars.length-1];
      lastBin.lo = Math.min(lastBin.lo, i);
      lastBin.hi = Math.max(lastBin.hi, i);
    }
  }
  return spectrogramBars;
}

function applyWindow(posX, windowType = 'Hann', windowParameter = 1, truncate = true, windowSkew = 0) {
  let x = windowSkew > 0 ? ((posX/2-0.5)/(1-(posX/2-0.5)*10*(windowSkew ** 2)))/(1/(1+10*(windowSkew ** 2)))*2+1 :
                           ((posX/2+0.5)/(1+(posX/2+0.5)*10*(windowSkew ** 2)))/(1/(1+10*(windowSkew ** 2)))*2-1;
  
  if (truncate && Math.abs(x) > 1)
    return 0;
  
  switch (windowType.toLowerCase()) {
    default:
      return 1;
    case 'hanning':
    case 'cosine squared':
    case 'hann':
      return Math.cos(x*Math.PI/2) ** 2;
    case 'raised cosine':
    case 'hamming':
      return 0.54 + 0.46 * Math.cos(x*Math.PI);
    case 'power of sine':
      return Math.cos(x*Math.PI/2) ** windowParameter;
    case 'circle':
    case 'power of circle':
      return Math.sqrt(1 - (x ** 2)) ** windowParameter;
    case 'tapered cosine':
    case 'tukey':
      return Math.abs(x) <= 1-windowParameter ? 1 : 
      (x > 0 ? 
       (-Math.sin((x-1)*Math.PI/windowParameter/2)) ** 2 :
       Math.sin((x+1)*Math.PI/windowParameter/2) ** 2);
    case 'blackman':
      return 0.42 + 0.5 * Math.cos(x*Math.PI) + 0.08 * Math.cos(x*Math.PI*2);
    case 'nuttall':
      return 0.355768 + 0.487396 * Math.cos(x*Math.PI) + 0.144232 * Math.cos(2*x*Math.PI) + 0.012604 * Math.cos(3*x*Math.PI);
    case 'flat top':
    case 'flattop':
      return 0.21557895 + 0.41663158 * Math.cos(x*Math.PI) + 0.277263158 * Math.cos(2*x*Math.PI) + 0.083578947 * Math.cos(3*x*Math.PI) + 0.006947368 * Math.cos(4*x*Math.PI);
    case 'kaiser':
      return Math.cosh(Math.sqrt(1-(x ** 2))*(windowParameter ** 2))/Math.cosh(windowParameter ** 2);
    case 'gauss':
    case 'gaussian':
      return Math.exp(-(windowParameter ** 2)*(x ** 2));
    case 'cosh':
    case 'hyperbolic cosine':
      return Math.E ** (-(windowParameter ** 2)*(Math.cosh(x)-1));
    case 'cosh 2':
    case 'hyperbolic cosine 2':
      return Math.E ** (-(Math.cosh(x*windowParameter)-1));
    case 'bartlett':
    case 'triangle':
    case 'triangular':
      return 1 - Math.abs(x);
    case 'poisson':
    case 'exponential':
      return Math.exp(-Math.abs(x * (windowParameter ** 2)));
    case 'hyperbolic secant':
    case 'sech':
      return 1/Math.cosh(x * (windowParameter ** 2));
    case 'quadratic spline':
      return Math.abs(x) <= 0.5 ? -((x*Math.sqrt(2)) ** 2)+1 : (Math.abs(x*Math.sqrt(2))-Math.sqrt(2)) ** 2;
    case 'parzen':
      return Math.abs(x) > 0.5 ? -2 * ((-1 + Math.abs(x)) ** 3) : 1 - 24 * (Math.abs(x/2) ** 2) + 48 * (Math.abs(x/2) ** 3);
    case 'welch':
      return (1 - (x ** 2)) ** windowParameter;
    case 'ogg':
    case 'vorbis':
      return Math.sin(Math.PI/2 * Math.cos(x*Math.PI/2) ** 2);
    case 'cascaded sine':
    case 'cascaded cosine':
    case 'cascaded sin':
    case 'cascaded cos':
      return 1 - Math.sin(Math.PI/2 * Math.sin(x*Math.PI/2) ** 2);
    case 'galss':
      return (((1-1/(x+2))*(1-1/(-x+2)))*4) ** 2 * -(Math.tanh(Math.SQRT2*(-x+1))*Math.tanh(Math.SQRT2*(-x-1)))/(Math.tanh(Math.SQRT2) ** 2);
    case 'glizzy':
      return (Math.cos(x*Math.PI/2) ** 2) * (
             0.5 +
             Math.cos(x*Math.PI) * 0.853553390593 +
             Math.cos(x*Math.PI*2) * 0.5 +
             Math.cos(x*Math.PI*3) * 0.146446609407
             ) / 2;
  }
}

function fscale(x, freqScale = 'logarithmic', freqSkew = 0.5) {
  switch(freqScale.toLowerCase()) {
    default:
      return x;
    case 'log':
    case 'logarithmic':
      return Math.log2(x);
    case 'mel':
      return Math.log2(1+x/700);
    case 'critical bands':
    case 'bark':
      return (26.81*x)/(1960+x)-0.53;
    case 'equivalent rectangular bandwidth':
    case 'erb':
      return Math.log2(1+0.00437*x);
    case 'cam':
    case 'cams':
      return Math.log2((x/1000+0.312)/(x/1000+14.675));
    case 'sinh':
    case 'arcsinh':
    case 'asinh':
      return Math.asinh(x/(10 ** (freqSkew*4)));
    case 'shifted log':
    case 'shifted logarithmic':
      return Math.log2((10 ** (freqSkew*4))+x);
    case 'nth root':
      return x ** (1/(11-freqSkew*10));
    case 'negative exponential':
      return -(2 ** (-x/(2 ** (7+freqSkew*8))));
    case 'adjustable bark':
      return (26.81 * x)/((10 ** (freqSkew*4)) + x);
    case 'period':
      return 1/x;
  }
}

function invFscale(x, freqScale = 'logarithmic', freqSkew = 0.5) {
  switch(freqScale.toLowerCase()) {
    default:
      return x;
    case 'log':
    case 'logarithmic':
      return 2 ** x;
    case 'mel':
      return 700 * ((2 ** x) - 1);
    case 'critical bands':
    case 'bark':
      return 1960 / (26.81/(x+0.53)-1);
    case 'equivalent rectangular bandwidth':
    case 'erb':
      return (1/0.00437) * ((2 ** x) - 1);
    case 'cam':
    case 'cams':
      return (14.675 * (2 ** x) - 0.312)/(1-(2 ** x)) * 1000;
    case 'sinh':
    case 'arcsinh':
    case 'asinh':
      return Math.sinh(x)*(10 ** (freqSkew*4));
    case 'shifted log':
    case 'shifted logarithmic':
      return (2 ** x) - (10 ** (freqSkew*4));
    case 'nth root':
      return x ** ((11-freqSkew*10));
    case 'negative exponential':
      return -Math.log2(-x)*(2 ** (7+freqSkew*8));
    case 'adjustable bark':
      return (10 ** (freqSkew*4)) / (26.81 / x - 1);
    case 'period':
      return 1/x;
  }
}
function ascale(x, alt = false) {
  const minDecibels = alt ? visualizerSettings.altMinDecibels : visualizerSettings.minDecibels,
        maxDecibels = alt ? visualizerSettings.altMaxDecibels : visualizerSettings.maxDecibels,
        useAbsolute = alt ? visualizerSettings.altUseAbsolute : visualizerSettings.useAbsolute,
        gamma = alt ? visualizerSettings.altGamma : visualizerSettings.gamma,
        useDecibels = alt ? visualizerSettings.altUseDecibels : visualizerSettings.useDecibels;
  if (useDecibels)
    return map(20*Math.log10(x), minDecibels, maxDecibels, 0, 1);
  else
    return map(x ** (1/gamma), !useAbsolute * (10 ** (minDecibels/20)) ** (1/gamma), (10 ** (maxDecibels/20)) ** (1/gamma), 0, 1);
}

// needed for note labels and grids
function generateOctaveBands(bandsPerOctave = 12, lowerNote = 4, higherNote = 123, detune = 0, tuningFreq = 440, bandwidth = 0.5) {
  const tuningNote = isFinite(Math.log2(tuningFreq)) ? Math.round((Math.log2(tuningFreq)-4)*12)*2 : 0,
        root24 = 2 ** ( 1 / 24 ),
        c0 = tuningFreq * root24 ** -tuningNote, // ~16.35 Hz
        groupNotes = 24/bandsPerOctave;
  let bands = [];
  for (let i = Math.round(lowerNote*2/groupNotes); i <= Math.round(higherNote*2/groupNotes); i++) {
    bands.push({
      lo: c0 * root24 ** ((i-bandwidth)*groupNotes+detune),
      ctr: c0 * root24 ** (i*groupNotes+detune),
      hi: c0 * root24 ** ((i+bandwidth)*groupNotes+detune)
    });
  }
  return bands;
}

function drawSpectrum(spectrum, length, half = false) {
  // Spectrum (FFT) visualization part
  const isFill = visualizerSettings.drawMode === 'fill' || visualizerSettings.drawMode === 'both',
        isStroke = visualizerSettings.drawMode === 'stroke' || visualizerSettings.drawMode === 'both',
        isCap = isStroke && !visualizerSettings.showStrokeRectAsBars,
        isFlipped = visualizerSettings.minFreq > visualizerSettings.maxFreq,
        minIdx = hertzToFFTBin(visualizerSettings.minFreq, isFlipped ? 'ceil' : 'floor', length, audioCtx.sampleRate),
        maxIdx = hertzToFFTBin(visualizerSettings.maxFreq, isFlipped ? 'floor' : 'ceil', length, audioCtx.sampleRate);
  if (visualizerSettings.useBars) {
    const spectrogramBars = generateBarData(canvas.width, length, audioCtx.sampleRate);
    for (let i = 0; i < spectrogramBars.length; i++) {
      const segmentStart = isNaN(spectrogramBars[i].start) ? 0 : spectrogramBars[i].start,
            segmentEnd = isNaN(spectrogramBars[i].end) ? 0 : spectrogramBars[i].end,
            x = segmentStart,
            y = canvas.height/(1+half),
            delta = segmentEnd - segmentStart,
            w = Math[delta < 0 ? 'min' : 'max'](Math.sign(delta), delta-Math.sign(delta)*visualizerSettings.barSpacing);
      if (isCap)
        ctx.beginPath();
      let mag = 0;
      for (let j = spectrogramBars[i].lo; j <= spectrogramBars[i].hi; j++) {
        const amp = spectrum[idxWrapOver(j, spectrum.length)]*weightSpectrumAtFreq(fftBinToHertz(j + visualizerSettings.slopeFunctionsOffset, spectrum.length, audioCtx.sampleRate));
        mag = Math.max(mag, amp);
        if (isCap && !visualizerSettings.lowDetail)
          ctx.rect(x, (canvas.height-ascale(amp)*canvas.height)/(1+half), w, ctx.lineWidth);
      }
      const h = -ascale(mag)*canvas.height/(1+half);
      if (isCap && visualizerSettings.lowDetail)
        ctx.rect(x, (canvas.height-ascale(mag)*canvas.height)/(1+half), w, ctx.lineWidth)
      ctx.globalAlpha = visualizerSettings.drawMode === 'both' ? 0.5 : 1;
      if (isFill)
        ctx.fillRect(x, y, w, h);
      ctx.globalAlpha = 1;
      if (isCap)
        ctx.fill();
      else if (isStroke)
        ctx.strokeRect(x, y, w, h);
    }
  }
  else {
    let deltaX,
        y = 0,
        backToBack = true;
    ctx.beginPath();
    if (isFill) {
      ctx.lineTo(canvas.width * isFlipped, canvas.height);
    }
    ctx.lineTo(canvas.width * isFlipped, map(ascale(spectrum[idxWrapOver(minIdx, spectrum.length)]*weightSpectrumAtFreq(fftBinToHertz(minIdx + visualizerSettings.slopeFunctionsOffset, spectrum.length, audioCtx.sampleRate))), 0, 1, canvas.height / (1+half), 0));
    for (let i = Math.min(minIdx, maxIdx); i < Math.max(minIdx, maxIdx); i++) {
      const x = map(fscale(fftBinToHertz(i, length, audioCtx.sampleRate), visualizerSettings.fscale, visualizerSettings.hzLinearFactor/100), fscale(visualizerSettings.minFreq, visualizerSettings.fscale, visualizerSettings.hzLinearFactor/100), fscale(visualizerSettings.maxFreq, visualizerSettings.fscale, visualizerSettings.hzLinearFactor/100), 0, canvas.width),
            amp = spectrum[idxWrapOver(i, spectrum.length)]*weightSpectrumAtFreq(fftBinToHertz(i + visualizerSettings.slopeFunctionsOffset, spectrum.length, audioCtx.sampleRate));
      if ((Math.round(x) - Math.round(deltaX) !== 0) || !visualizerSettings.lowDetail) {
        if (backToBack || !visualizerSettings.lowDetail)
          y = amp;
        ctx.lineTo(x, map(ascale(y), 0, 1, canvas.height / (1+half), 0));
        backToBack = true;
        y = 0;
      }
      else {
        backToBack = false;
        y = Math.max(y, amp);
      }
      deltaX = x;
    }
    ctx.lineTo(canvas.width * (1-isFlipped), map(ascale(spectrum[idxWrapOver(maxIdx, spectrum.length)]*weightSpectrumAtFreq(fftBinToHertz(maxIdx + visualizerSettings.slopeFunctionsOffset, spectrum.length, audioCtx.sampleRate))), 0, 1, canvas.height / (1+half), 0));
    if (isFill) {
      ctx.lineTo(canvas.width * (1-isFlipped), canvas.height)
    }
    ctx.globalAlpha = visualizerSettings.drawMode === 'both' ? 0.5 : 1;
    if (isFill)
      ctx.fill();
    ctx.globalAlpha = 1;
    if (isStroke)
      ctx.stroke();
  }
}

function calcRGB(r = 0, g = 0, b = 0) {
  return {
    r: isNaN(r) ? 0 : clamp(r, 0, 255),
    g: isNaN(g) ? 0 : clamp(g, 0, 255),
    b: isNaN(b) ? 0 : clamp(b, 0, 255)
  };
}

// Weighting and frequency slope functions
function calcFreqTilt(x, amount = 3, offset = 1000) {
  return (x/offset) ** (amount/6);
}

function applyEqualize(x, amount = 6, depth = 1024, offset = 44100) {
  const pos = x * depth / offset,
        bias = 1.0025 ** (-pos) * 0.04;
  return (10 * Math.log10(1 + bias + (pos + 1) * (9 - bias)/depth)) ** (amount/6);
}

function applyWeight(x, weightAmount = 1, weightType = 'a') {
  const f2 = x ** 2;
  switch (weightType) {
    case 'a':
      return (1.2588966 * 148840000 * (f2 ** 2) /
      ((f2 + 424.36) * Math.sqrt((f2 + 11599.29) * (f2 + 544496.41)) * (f2 + 148840000))) ** weightAmount;
    case 'b':
      return (1.019764760044717 * 148840000 * (x ** 3) /
      ((f2 + 424.36) * Math.sqrt(f2 + 25122.25) * (f2 + 148840000))) ** weightAmount;
    case 'c':
      return (1.0069316688518042 * 148840000 * f2 /
      ((f2 + 424.36) * (f2 + 148840000))) ** weightAmount;
    case 'd':
      return ((x / 6.8966888496476e-5) * Math.sqrt(
               (
                 ((1037918.48 - f2)*(1037918.48 - f2) + 1080768.16*f2) /
                 ((9837328 - f2)*(9837328 - f2) + 11723776*f2)
               ) / ((f2 + 79919.29) * (f2 + 1345600))
             )) ** weightAmount;
    case 'm':
      const h1 = -4.737338981378384e-24*(f2 ** 3) + 2.043828333606125e-15*(f2 ** 2) - 1.363894795463638e-7*f2 + 1,
            h2 = 1.306612257412824e-19*(x ** 5) - 2.118150887518656e-11*(x ** 3) + 5.559488023498642e-4*x;

      return (8.128305161640991 * 1.246332637532143e-4 * x / Math.hypot(h1, h2)) ** weightAmount;
    case 'k':
      const c2 = 4284900, // from 2070
            z2 = 1690000, // from 1300
            f = 80,
            s = Math.sqrt((1 + (f2) / z2) / (1 + (f2) / c2)), // shelving part
            l = ((x/f) ** 2)/Math.sqrt(0.5*(1 - (x/f) ** 2) ** 2 + (x/f) ** 2) / Math.SQRT2; // lowpass part
      
      return (s*l) ** weightAmount;
    default:
      return 1;
  }
}

function weightSpectrumAtFreq(x) {
  return calcFreqTilt(x, visualizerSettings.slope, visualizerSettings.slopeOffset) * applyEqualize(x, visualizerSettings.equalizeAmount, visualizerSettings.equalizeDepth, visualizerSettings.equalizeOffset) * applyWeight(x, visualizerSettings.weightingAmount/100, visualizerSettings.weightingType)
}

// NC method
function ncMethod(fftData, distance = 1) {
  const magnitudeData = [],
        offset = Math.trunc(distance/2);
  for (let i = 0; i < fftData.length; i++) {
    const cosL = fftData[idxWrapOver(i-offset, fftData.length)].re,
          sinL = fftData[idxWrapOver(i-offset, fftData.length)].im,
          cosR = fftData[idxWrapOver(i-offset+distance, fftData.length)].re,
          sinR = fftData[idxWrapOver(i-offset+distance, fftData.length)].im;
    magnitudeData[i] = Math.sqrt(Math.max(0, -(cosL*cosR)-(sinL*sinR)));
  }
  return magnitudeData;
}

function getFreqGridTable(showLabels, labelMode, showDC, showNyquist) {
  const freqLabels = [];
  let freqsTable;
  switch(labelMode) {
    case 'decade':
      freqsTable = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 20000];
      break;
    case 'decade 2':
      freqsTable = [10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000];
      break;
    case 'decade 3':
      freqsTable = [10, 100, 1000, 10000];
      break;
    case 'octave':
      freqsTable = [31, 63.5, 125, 250, 500, 1000, 2000, 4000, 8000, 16000];
      break;
    case 'powers of two':
      freqsTable = [32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384];
      break;
    case 'note':
      freqsTable = generateOctaveBands(12, 0, 132, 0, visualizerSettings.labelTuning).map(x => x.ctr);
      break;
    case 'bark':
      freqsTable = [50, 150, 250, 350, 450, 570, 700, 840, 1000, 1170, 1370, 1600, 1850, 2150, 2500, 2900, 3400, 4000, 4800, 5800, 7000, 8500, 10500, 13500];
      break;
    case 'linear':
      freqsTable = [1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 11000, 12000, 13000, 14000, 15000, 16000, 17000, 18000, 19000, 20000];
  }
  if (showLabels)
    freqLabels.push(...freqsTable);
  if (showDC)
    freqLabels.push(0);
  if (showNyquist)
    freqLabels.push(audioCtx.sampleRate/2);
  return freqLabels;
}
              
            
!
999px

Console