HTML preprocessors can make writing HTML more powerful or convenient. For instance, Markdown is designed to be easier to write and read for text documents and you could write a loop in Pug.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. So you don't have access to higher-up elements like the <html>
tag. If you want to add classes there that can affect the whole document, this is the place to do it.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. If you need things in the <head>
of the document, put that code here.
The resource you are linking to is using the 'http' protocol, which may not work when the browser is using https.
CSS preprocessors help make authoring CSS easier. All of them offer things like variables and mixins to provide convenient abstractions.
It's a common practice to apply CSS to a page that styles elements such that they are consistent across all browsers. We offer two of the most popular choices: normalize.css and a reset. Or, choose Neither and nothing will be applied.
To get the best cross-browser support, it is a common practice to apply vendor prefixes to CSS properties and values that require them to work. For instance -webkit-
or -moz-
.
We offer two popular choices: Autoprefixer (which processes your CSS server-side) and -prefix-free (which applies prefixes via a script, client-side).
Any URLs added here will be added as <link>
s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.
You can apply CSS to your Pen from any stylesheet on the web. Just put a URL to it here and we'll apply it, in the order you have them, before the CSS in the Pen itself.
You can also link to another Pen here (use the .css
URL Extension) and we'll pull the CSS from that Pen and include it. If it's using a matching preprocessor, use the appropriate URL Extension and we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
JavaScript preprocessors can help make authoring JavaScript easier and more convenient.
Babel includes JSX processing.
Any URL's added here will be added as <script>
s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.
You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.
If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
Search for and use JavaScript packages from npm here. By selecting a package, an import
statement will be added to the top of the JavaScript editor for this package.
Using packages here is powered by esm.sh, which makes packages from npm not only available on a CDN, but prepares them for native JavaScript ESM usage.
All packages are different, so refer to their docs for how they work.
If you're using React / ReactDOM, make sure to turn on Babel for the JSX processing.
If active, Pens will autosave every 30 seconds after being saved once.
If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.
If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.
Visit your global Editor Settings.
<div id="container"><canvas id="canvas"></canvas></div>
<audio id="audio" controls crossorigin></audio>
<input id="audioFileInput" type="file" accept="audio/*">
<script id="AudioProvider" type="worklet">
class AudioProvider extends AudioWorkletProcessor {
constructor() {
super();
this.dataArrays = [];
this.bufferSize = 32768; // can handle more than 32768 samples of PCM data unlike in AnalyserNode.getFloatTimeDomainData, which is capped at 32768 samples
this.bufferIdx = 0;
this.currentTimeInSamples = 0;
this.port.onmessage = (e) => {
const audioChunks = [],
retrievalWindowSize = e.data ? Math.min(this.bufferSize, currentFrame - this.currentTimeInSamples) : this.bufferSize,
timeOffset = this.bufferSize-retrievalWindowSize;
for (let channelIdx = 0; channelIdx < this.dataArrays.length; channelIdx++) {
audioChunks[channelIdx] = [];
for (let i = 0; i < this.dataArrays[channelIdx].length-timeOffset; i++) {
const data = this.dataArrays[channelIdx][((this.bufferIdx+i+timeOffset) % this.bufferSize + this.bufferSize) % this.bufferSize];
audioChunks[channelIdx][i] = data !== undefined ? data : 0;
}
}
this.port.postMessage({currentChunk: audioChunks});
this.currentTimeInSamples = currentFrame;
};
}
process(inputs, _, _2) {
if (inputs[0].length <= 0)
return true;
this.dataArrays.length = inputs[0].length;
for (let i = 0; i < this.dataArrays.length; i++) {
if (this.dataArrays[i] === undefined)
this.dataArrays[i] = new Array(this.bufferSize);
else {
this.dataArrays[i].length = this.bufferSize;
}
}
for (let i = 0; i < inputs[0][0].length; i++) {
this.bufferIdx = Math.min(this.bufferIdx, this.bufferSize-1);
for (let channelIdx = 0; channelIdx < inputs[0].length; channelIdx++) {
this.dataArrays[channelIdx][this.bufferIdx] = inputs[0][channelIdx][i];
}
this.bufferIdx = ((this.bufferIdx + 1) % this.bufferSize + this.bufferSize) % this.bufferSize;
}
return true;
}
}
registerProcessor('audio-provider', AudioProvider);
</script>
<script>
class AnalogStyleAnalyzer {
constructor(...args) {
// initialize the sDFT coefficients
this.calcCoeffs(args);
this.spectrumData = [];
}
calcCoeffs(freqBands, order = 4, timeRes = Infinity, bandwidth = 1, sampleRate = 44100, compensateBW = true, prewarpQ = false) {
this._coeffs = freqBands.map(x => {
// biquad bandpass filter (cascaded biquad bandpass is not Butterworth nor Bessel, rather it is something called "critically-damped" since each filter stage shares the same every biquad coefficients)
const K = Math.tan(Math.PI * x.ctr/sampleRate),
bw = Math.abs(x.hi-x.lo) * bandwidth + 1/(timeRes/1000),
qCompensationFactor = prewarpQ ? (Math.PI * x.ctr/sampleRate)/K : 1,
Q = x.ctr/bw * qCompensationFactor / (compensateBW ? Math.sqrt(order) : 1),
norm = 1 / (1 + K / Q + K * K),
a0 = K / Q * norm,
a1 = 0,
a2 = -a0,
b1 = 2 * (K * K - 1) * norm,
b2 = (1 - K / Q + K * K) * norm,
zs = [];
for (let i = 0; i < order; i++) {
zs[i] = {
z1: 0,
z2: 0,
out: 0
}
}
return {
a0: a0,
a1: a1,
a2: a2,
b1: b1,
b2: b2,
zs: zs
};
});
}
analyze(samples) {
const newSpectrumData = new Array(this._coeffs.length).fill(0);
for (const x of samples) {
for (let i = 0; i < this._coeffs.length; i++) {
for (let j = 0; j < this._coeffs[i].zs.length; j++) {
const input = j <= 0 ? x : this._coeffs[i].zs[j-1].out;
this._coeffs[i].zs[j].out = input * this._coeffs[i].a0 + this._coeffs[i].zs[j].z1;
this._coeffs[i].zs[j].z1 = input * this._coeffs[i].a1 + this._coeffs[i].zs[j].z2 - this._coeffs[i].b1 * this._coeffs[i].zs[j].out;
this._coeffs[i].zs[j].z2 = input * this._coeffs[i].a2 - this._coeffs[i].b2 * this._coeffs[i].zs[j].out;
}
newSpectrumData[i] = Math.max(newSpectrumData[i], Math.abs(this._coeffs[i].zs[this._coeffs[i].zs.length-1].out));
}
}
this.spectrumData = newSpectrumData.map(x => x/2);
}
}
</script>
<script>
/**
* Single file implementation of sliding windowed infinite Fourier transform (SWIFT)
*
* The frequency bands data is formatted like:
* {lo: lowerBound,
* ctr: center,
* hi: higherBound}
*
* where lo and hi are used for calculating the necessary bandwidth for variable-Q transform spectrum visualizations and ctr for center frequency. This is generated using functions like generateFreqBands
*/
class SWIFT {
constructor(...args) {
// initialize the sDFT coefficients
this.calcCoeffs(args);
this.spectrumData = [];
}
calcCoeffs(freqBands, order = 4, timeRes = 600, bandwidth = 1, sampleRate = 44100, compensateBW = true) {
// calcCoeffs() can be called anywhere else to re-initialize sliding DFT after changes in frequency band distributions and note that x and y are used instead of real and imaginary since vector rotation is the equivalent of the complex one
this._coeffs = [];
freqBands.map((x, i) => {
// rX and rY are calculated in advance here since calculating sin and cos functions are pretty slow af
this._coeffs[i] = {
rX: Math.cos(x.ctr*Math.PI/sampleRate*2),
rY: Math.sin(x.ctr*Math.PI/sampleRate*2),
decay: Math.E ** ((-Math.abs(x.hi-x.lo) * Math.PI * bandwidth / sampleRate - 1/(timeRes*sampleRate/(Math.PI*1000))) * (compensateBW ? Math.sqrt(order) : 1)),
coeffs: []
};
for (let j = 0; j < order; j++) {
this._coeffs[i].coeffs[j] = {
x: 0,
y: 0
};
}
});
}
analyze(dataArray) {
const newSpectrumData = new Array(this._coeffs.length).fill(0);
for (const x of dataArray) {
for (let i = 0; i < this._coeffs.length; i++) {
for (let j = 0; j < this._coeffs[i].coeffs.length; j++) {
const input = j <= 0 ? {
x: x,
y: 0,
} : this._coeffs[i].coeffs[j-1],
outX = (this._coeffs[i].coeffs[j].x * this._coeffs[i].rX - this._coeffs[i].coeffs[j].y * this._coeffs[i].rY) * this._coeffs[i].decay + input.x * (1-this._coeffs[i].decay),
outY = (this._coeffs[i].coeffs[j].x * this._coeffs[i].rY + this._coeffs[i].coeffs[j].y * this._coeffs[i].rX) * this._coeffs[i].decay + input.y * (1-this._coeffs[i].decay);
this._coeffs[i].coeffs[j].x = outX;
this._coeffs[i].coeffs[j].y = outY;
}
newSpectrumData[i] = Math.max(newSpectrumData[i],
this._coeffs[i].coeffs[this._coeffs[i].coeffs.length-1].x ** 2 +
this._coeffs[i].coeffs[this._coeffs[i].coeffs.length-1].y ** 2);
}
}
this.spectrumData = newSpectrumData.map((x) => Math.sqrt(x));
}
}
</script>
<script>
/**
* Single file implementation of variable-Q sliding DFT (VQ-sDFT)
*
* The frequency bands data is formatted like:
* {lo: lowerBound,
* ctr: center,
* hi: higherBound}
*
* where lo and hi are used for calculating the necessary bandwidth for variable-Q/constant-Q transform spectrum analysis and ctr for center frequency. This is generated using functions like generateFreqBands()
*
* Note: This algorithm is derived from the paper "Application of Improved Sliding DFT Algorithm for Non-Integer k" by Carl Q. Howard (https://acoustics.asn.au/conference_proceedings/AAS2021/papers/p60.pdf)
*/
class VQsDFT {
constructor(...args) {
this.calcCoeffs(args);
this.spectrumData = [];
}
calcCoeffs(freqBands, window = [1, 0.5], timeRes = 600, bandwidth = 1, bufferSize = 44100, sampleRate = 44100, useNC = false) {
this._coeffs = freqBands.map(x => {
const fiddles = [],
twiddles = [],
resonCoeffs = [],
coeffs1 = [],
coeffs2 = [],
coeffs3 = [],
coeffs4 = [],
coeffs5 = [],
gains = [],
period = Math.trunc(Math.min(bufferSize, sampleRate / (bandwidth * Math.abs(x.hi - x.lo) + 1/(timeRes / 1000)))), // N must be an integer, but K doesn't have to be
minIdx = useNC ? 0 : -window.length + 1,
maxIdx = useNC ? 2 : window.length;
// this below is needed since we have to apply a frequency-domain window function
for (let i = minIdx; i < maxIdx; i++) {
const amplitude = useNC ? 1 : window[Math.abs(i)] * (-(Math.abs(i) % 2) * 2 + 1),
k = x.ctr * period / sampleRate + i - useNC/2,
fid = -2 * Math.PI * k,
twid = 2 * Math.PI * k / period,
reson = 2 * Math.cos(2*Math.PI*k/period);
fiddles.push({
x: Math.cos(fid),
y: Math.sin(fid)
});
twiddles.push({
x: Math.cos(twid),
y: Math.sin(twid)
});
resonCoeffs.push(reson);
coeffs1.push({x: 0, y: 0});
coeffs2.push({x: 0, y: 0});
coeffs3.push({x: 0, y: 0});
coeffs4.push({x: 0, y: 0});
coeffs5.push({x: 0, y: 0});
gains.push(amplitude);
}
return {
period: period,
twiddles: twiddles,
fiddles: fiddles,
resonCoeffs: resonCoeffs,
coeffs1: coeffs1,
coeffs2: coeffs2,
coeffs3: coeffs3,
coeffs4: coeffs4,
coeffs5: coeffs5,
gains: gains,
nc: useNC
};
});
this._buffer = new Array(bufferSize+1).fill(0);
this._bufferIdx = this._buffer.length-1; // this is required for circular buffer
}
analyze(samples) {
this.spectrumData = new Array(this._coeffs.length).fill(0);
for (const sample of samples) {
// Admittedly slow linear buffer
/*
this._buffer.push(sample);
this._buffer.shift();
*/
// Circular buffer
this._bufferIdx = ((this._bufferIdx + 1) % this._buffer.length + this._buffer.length) % this._buffer.length;
this._buffer[this._bufferIdx] = sample;
for (let i = 0; i < this._coeffs.length; i++) {
const coeff = this._coeffs[i],
kernelLength = coeff.coeffs1.length,
/*oldest = this._buffer.length-coeff.period-1,
latest = this._buffer.length-1,*/
oldest = ((this._bufferIdx - coeff.period) % this._buffer.length + this._buffer.length) % this._buffer.length,
latest = this._bufferIdx,
sum = {
x: 0,
y: 0
};
for (let j = 0; j < kernelLength; j++) {
const fiddle = coeff.fiddles[j],
twiddle = coeff.twiddles[j],
// Comb stage
combX = this._buffer[latest] * fiddle.x - this._buffer[oldest],
combY = this._buffer[latest] * fiddle.y
// Second stage
coeff.coeffs1[j].x = combX * twiddle.x - combY * twiddle.y - coeff.coeffs2[j].x;
coeff.coeffs1[j].y = combX * twiddle.y + combY * twiddle.x - coeff.coeffs2[j].y;
coeff.coeffs2[j].x = combX;
coeff.coeffs2[j].y = combY;
// Real resonator
coeff.coeffs3[j].x = coeff.coeffs1[j].x + coeff.resonCoeffs[j] * coeff.coeffs4[j].x - coeff.coeffs5[j].x;
coeff.coeffs3[j].y = coeff.coeffs1[j].y + coeff.resonCoeffs[j] * coeff.coeffs4[j].y - coeff.coeffs5[j].y;
coeff.coeffs5[j].x = coeff.coeffs4[j].x;
coeff.coeffs5[j].y = coeff.coeffs4[j].y;
coeff.coeffs4[j].x = coeff.coeffs3[j].x;
coeff.coeffs4[j].y = coeff.coeffs3[j].y;
sum.x += coeff.coeffs3[j].x * coeff.gains[j] / coeff.period;
sum.y += coeff.coeffs3[j].y * coeff.gains[j] / coeff.period;
}
const period = coeff.period
this.spectrumData[i] = Math.max(this.spectrumData[i], coeff.nc ? -(coeff.coeffs3[0].x/period*coeff.coeffs3[1].x/period)-(coeff.coeffs3[0].y/period*coeff.coeffs3[1].y/period) : sum.x ** 2 + sum.y ** 2);
}
}
this.spectrumData = this.spectrumData.map(x => Math.sqrt(x));
}
}
</script>
<script>
function map(x, min, max, targetMin, targetMax) {
return (x - min) / (max - min) * (targetMax - targetMin) + targetMin;
}
function clamp(x, min, max) {
return Math.min(Math.max(x, min), max);
}
function idxWrapOver(x, length) {
return (x % length + length) % length;
}
// Hz and FFT bin conversion
function hertzToFFTBin(x, y = 'round', bufferSize = 4096, sampleRate = 44100) {
const bin = x * bufferSize / sampleRate;
let func = y;
if (!['floor','ceil','trunc'].includes(func))
func = 'round'; // always use round if you specify an invalid/undefined value
return Math[func](bin);
}
function fftBinToHertz(x, bufferSize = 4096, sampleRate = 44100) {
return x * sampleRate / bufferSize;
}
// Calculate the FFT
function calcFFT(input) {
let fft = input.map(x => x);
let fft2 = input.map(x => x);
transform(fft, fft2);
let output = new Array(Math.round(fft.length/2)).fill(0);
for (let i = 0; i < output.length; i++) {
output[i] = Math.hypot(fft[i], fft2[i])/(fft.length);
}
return output;
}
function calcComplexFFT(input) {
let fft = input.map(x => x);
let fft2 = input.map(x => x);
transform(fft, fft2);
return input.map((_, i, arr) => {
return {
re: fft[i]/(arr.length/2),
im: fft2[i]/(arr.length/2),
magnitude: Math.hypot(fft[i], fft2[i])/(arr.length/2),
phase: Math.atan2(fft2[i], fft[i])
};
});
}
function calcComplexInputFFT(real, imag) {
if (real.length !== imag.length)
return [];
const fft1 = real.map(x => x),
fft2 = imag.map(x => x);
transform(fft1, fft2);
return real.map((_, i, arr) => {
return {
re: fft1[i]/arr.length,
im: fft2[i]/arr.length,
magnitude: Math.hypot(fft1[i], fft2[i])/arr.length,
phase: Math.atan2(fft2[i], fft1[i])
}
});
}
/**
* FFT and convolution (JavaScript)
*
* Copyright (c) 2017 Project Nayuki. (MIT License)
* https://www.nayuki.io/page/free-small-fft-in-multiple-languages
*/
/*
* Computes the discrete Fourier transform (DFT) of the given complex vector, storing the result back into the vector.
* The vector can have any length. This is a wrapper function.
*/
function transform(real, imag) {
const n = real.length;
if (n != imag.length)
throw "Mismatched lengths";
if (n <= 0)
return;
else if ((2 ** Math.trunc(Math.log2(n))) === n) // Is power of 2
transformRadix2(real, imag);
else // More complicated algorithm for arbitrary sizes
transformBluestein(real, imag);
}
/*
* Computes the inverse discrete Fourier transform (IDFT) of the given complex vector, storing the result back into the vector.
* The vector can have any length. This is a wrapper function. This transform does not perform scaling, so the inverse is not a true inverse.
*/
function inverseTransform(real, imag) {
transform(imag, real);
}
/*
* Computes the discrete Fourier transform (DFT) of the given complex vector, storing the result back into the vector.
* The vector's length must be a power of 2. Uses the Cooley-Tukey decimation-in-time radix-2 algorithm.
*/
function transformRadix2(real, imag) {
// Length variables
const n = real.length;
if (n != imag.length)
throw "Mismatched lengths";
if (n <= 1) // Trivial transform
return;
const logN = Math.log2(n);
if ((2 ** Math.trunc(logN)) !== n)
throw "Length is not a power of 2";
// Trigonometric tables
let cosTable = new Array(n / 2);
let sinTable = new Array(n / 2);
for (let i = 0; i < n / 2; i++) {
cosTable[i] = Math.cos(2 * Math.PI * i / n);
sinTable[i] = Math.sin(2 * Math.PI * i / n);
}
// Bit-reversed addressing permutation
for (let i = 0; i < n; i++) {
let j = reverseBits(i, logN);
if (j > i) {
let temp = real[i];
real[i] = real[j];
real[j] = temp;
temp = imag[i];
imag[i] = imag[j];
imag[j] = temp;
}
}
// Cooley-Tukey decimation-in-time radix-2 FFT
for (let size = 2; size <= n; size *= 2) {
let halfsize = size / 2;
let tablestep = n / size;
for (let i = 0; i < n; i += size) {
for (let j = i, k = 0; j < i + halfsize; j++, k += tablestep) {
const l = j + halfsize;
const tpre = real[l] * cosTable[k] + imag[l] * sinTable[k];
const tpim = -real[l] * sinTable[k] + imag[l] * cosTable[k];
real[l] = real[j] - tpre;
imag[l] = imag[j] - tpim;
real[j] += tpre;
imag[j] += tpim;
}
}
}
// Returns the integer whose value is the reverse of the lowest 'bits' bits of the integer 'x'.
function reverseBits(x, bits) {
let y = 0;
for (let i = 0; i < bits; i++) {
y = (y << 1) | (x & 1);
x >>>= 1;
}
return y;
}
}
/*
* Computes the discrete Fourier transform (DFT) of the given complex vector, storing the result back into the vector.
* The vector can have any length. This requires the convolution function, which in turn requires the radix-2 FFT function.
* Uses Bluestein's chirp z-transform algorithm.
*/
function transformBluestein(real, imag) {
// Find a power-of-2 convolution length m such that m >= n * 2 + 1
const n = real.length;
if (n != imag.length)
throw "Mismatched lengths";
const m = 2 ** Math.trunc(Math.log2(n*2)+1);
// Trignometric tables
let cosTable = new Array(n);
let sinTable = new Array(n);
for (let i = 0; i < n; i++) {
let j = i * i % (n * 2); // This is more accurate than j = i * i
cosTable[i] = Math.cos(Math.PI * j / n);
sinTable[i] = Math.sin(Math.PI * j / n);
}
// Temporary vectors and preprocessing
let areal = newArrayOfZeros(m);
let aimag = newArrayOfZeros(m);
for (let i = 0; i < n; i++) {
areal[i] = real[i] * cosTable[i] + imag[i] * sinTable[i];
aimag[i] = -real[i] * sinTable[i] + imag[i] * cosTable[i];
}
let breal = newArrayOfZeros(m);
let bimag = newArrayOfZeros(m);
breal[0] = cosTable[0];
bimag[0] = sinTable[0];
for (let i = 1; i < n; i++) {
breal[i] = breal[m - i] = cosTable[i];
bimag[i] = bimag[m - i] = sinTable[i];
}
// Convolution
let creal = new Array(m);
let cimag = new Array(m);
convolveComplex(areal, aimag, breal, bimag, creal, cimag);
// Postprocessing
for (let i = 0; i < n; i++) {
real[i] = creal[i] * cosTable[i] + cimag[i] * sinTable[i];
imag[i] = -creal[i] * sinTable[i] + cimag[i] * cosTable[i];
}
}
/*
* Computes the circular convolution of the given real vectors. Each vector's length must be the same.
*/
function convolveReal(x, y, out) {
const n = x.length;
if (n != y.length || n != out.length)
throw "Mismatched lengths";
convolveComplex(x, newArrayOfZeros(n), y, newArrayOfZeros(n), out, newArrayOfZeros(n));
}
/*
* Computes the circular convolution of the given complex vectors. Each vector's length must be the same.
*/
function convolveComplex(xreal, ximag, yreal, yimag, outreal, outimag) {
const n = xreal.length;
if (n != ximag.length || n != yreal.length || n != yimag.length
|| n != outreal.length || n != outimag.length)
throw "Mismatched lengths";
xreal = xreal.slice();
ximag = ximag.slice();
yreal = yreal.slice();
yimag = yimag.slice();
transform(xreal, ximag);
transform(yreal, yimag);
for (let i = 0; i < n; i++) {
const temp = xreal[i] * yreal[i] - ximag[i] * yimag[i];
ximag[i] = ximag[i] * yreal[i] + xreal[i] * yimag[i];
xreal[i] = temp;
}
inverseTransform(xreal, ximag);
for (let i = 0; i < n; i++) { // Scaling (because this FFT implementation omits it)
outreal[i] = xreal[i] / n;
outimag[i] = ximag[i] / n;
}
}
function newArrayOfZeros(n) {
let result = new Array(n).fill(0);
return result;
}
</script>
body {
margin: 0;
overflow: hidden;
}
audio {
display: inline-block;
width: 100%;
height: 40px;
}
canvas {
display: block;
width: 100%;
}
#container {
height: calc( 100vh - 40px );
}
#upload {
display: none;
}
// necessary parts for audio context and audio elements respectively
const audioCtx = new AudioContext();
const audioPlayer = document.getElementById('audio');
const localAudioElement = document.getElementById('audioFileInput');
localAudioElement.addEventListener('change', loadLocalFile);
// canvas is for displaying visuals
const canvas = document.getElementById('canvas'),
ctx = canvas.getContext('2d'),
container = document.getElementById('container');
const audioSource = audioCtx.createMediaElementSource(audioPlayer);
const analyser = audioCtx.createAnalyser();
analyser.fftSize = 32768; // maxes out FFT size
const dataArray = new Float32Array(analyser.fftSize);
// variables
const currentSpectrum = [],
peaks = [],
peakHolds = [],
averageSpectrum = [],
fifoBuffers = [];
let cumulativeIdx = 0, //required for infinite averaging
fifoIdx = 0;
const delay = audioCtx.createDelay();
audioSource.connect(delay);
delay.connect(audioCtx.destination);
//audioSource.connect(audioCtx.destination);
audioSource.connect(analyser);
let audioProvider,
currentSampleRate = audioCtx.sampleRate,
freqBands = [];
const analogStyleAnalyser = new AnalogStyleAnalyzer([]),
swift = new SWIFT([]),
sdft = new VQsDFT([]);
const customDSPSource = document.getElementById('AudioProvider'),
dspSourceBlob = new Blob([customDSPSource.innerText], {type: 'application/javascript'}),
dspSourceUrl = URL.createObjectURL(dspSourceBlob);
const auxCanvas = new OffscreenCanvas(0,0), // OffscreenCanvas is needed for spectrogram visualization
auxCtx = auxCanvas.getContext('2d');
auxCtx.imageSmoothingEnabled = false;
let accumulatedData = [],
sampleCounter = 0,
staticSpectrogramIdx = 0,
accumulatedSpectrum = [],
lastAccumulatedSpectrum = [];
const visualizerSettings = {
//fftSize: 1152,
freqDist: 'octaves',
numBands: 50, // similar to WMP's Bars visualization when number of bands are at maximum possible
minFreq: 20,
maxFreq: 20000,
fscale: 'logarithmic',
hzLinearFactor: 0,
minNote: 4,
maxNote: 124,
noteTuning: 1000, // setting it to 1kHz does automatically makes octave bands compliant with ANSI S1.11-2004 standard when comes to one-third octave band center frequencies right?
octaves: 6, // defaults to something similar to Spectroscope visualization in WaveLab
detune: 0,
analysisAlgorithm: 'analog',
bandwidth: 1,
order: 1,
prewarpQ: true,
compensateBW: true,
windowFunction: '1, 0.5',
customWindow: '1',
useNC: false,
timeRes: 100,
maxTimeRes: 1000,
constantQ: true,
resetCoeffs: recalcCoeffs,
resetAverages: resetSmoothedValues,
useAccurateSmoothing: true,
antiFlicker: false, // relevant for analog-style analyzer and sample-by-sample smoothing calculation
smoothingTimeConstant: 90, // default value is approximately the main bar of audio visualizer thing in Geometry Dash 2.2
useAverageSmoothing: false,
peakDecay: 0,
peakHold: 30,
useActualPeak: false,
fadingPeaks: true, // this effect is used on peak hold part of Audio Visualizer effect on GD 2.2
// minDecibels and maxDecibels defaults to -60...+6 to match foobar2000's built-in Spectrum visualization
minDecibels: -60,
maxDecibels: 6,
useDecibels: true,
gamma: 1,
useAbsolute: true,
decoupleAmplitudeFromSpectrum: true,
// spectrogram part
altMinDecibels: -66,
altMaxDecibels: 0,
altUseDecibels: true,
altGamma: 1,
altUseAbsolute: true,
showLabels: true,
showLabelsY: true,
amplitudeLabelInterval: 10,
labelTuning: 440,
showDC: true,
showNyquist: true,
mirrorLabels: true,
spectrogramExtendGrid: false,
diffLabels: false,
labelTextAlign: 'start',
labelTextBaseline: 'alphabetic',
labelTextBaseline2: 'alphabetic',
labelMode : 'decade',
freeze: false,
pauseAverage: true,
freezeFIFO: true,
useGradient: true,
alternateColor: false,
darkMode: false,
showMain: true,
showPeaks: true,
showAverage: false,
averagingDomain: 'rms', // Enhanced Spectrum analyzer (foo_enhanced_spectrum_analyzer) component should have used the "recommended" way of calculating the average spectrum, that is to calculate the average in the squared (x^2) domain and do a square root afterwards, but only time will tell whether or not the upcoming Enhanced Spectrum analyzer 2.0.0.0 adds the true RMS averaging as well as infinite averaging
showRMS: false,
fifoLength: 300,
fifoDomain: 'rms',
showCalibration: false,
calibrationSrc: 'main',
calibrationDomain: 'linear',
barSpacing: 2,
spacingMode: 'smooth',
centerBars: true,
peakHeight: 2,
drawLines: false, // Draws lines as in foo_enhanced_spectrum_analyzer instead of bargraph like in foo_musical_spectrum
lineWidth: 1,
lineJoin: 'miter',
miterLimit: 10,
drawMode: 'fill',
drawMode2: 'stroke',
drawMode3: 'fill',
display: 'spectrum',
resetBoth: resetBoth,
autoReset: true,
useIncorrectWay: false, // when enabled, it uses the wrong way of getting samples
fftSize: 576, // default is the buffer length of PCM data on Winamp's visualization system
hopSize: 576, // determines the scrolling speed of the spectrogram part
channelMode: 'mono',
preventGainIncreaseFromChannelSum: true,
channelIdx1: 0,
channelIdx2: 1,
reverseIdx1: false,
reverseIdx2: false,
//compensateDelay: true
},
drawModes = {
'Stroke': 'stroke',
'Fill': 'fill',
'Both': 'both'
},
loader = {
url: '',
load: function() {
audioPlayer.src = this.url;
audioPlayer.play();
},
loadLocal: function() {
localAudioElement.click();
},
toggleFullscreen: _ => {
if (document.fullscreenElement === canvas)
document.exitFullscreen();
else
canvas.requestFullscreen();
}
};
// dat.GUI for quick customization
let gui = new dat.GUI();
gui.add(loader, 'url').name('URL');
gui.add(loader, 'load').name('Load');
gui.add(loader, 'loadLocal').name('Load from local device');
let settings = gui.addFolder('Visualization settings');
// FFT size can be non-power of 2 because we use the FFT library that supports non-power of two data length
//settings.add(visualizerSettings, 'fftSize', 32, 32768, 1).name('FFT size');
// The additional parameters goes here
// another parameters at the end
const freqDistFolder = settings.addFolder('Frequency distribution');
freqDistFolder.add(visualizerSettings, 'freqDist', {
'Frequency bands': 'freqs',
'Octave bands': 'octaves'
}).name('Frequency band distribution').onChange(recalcCoeffs);
// up to 192kHz sample rate is supported for full-range visualization
freqDistFolder.add(visualizerSettings, 'minFreq', 0, 96000).name('Minimum frequency').onChange(recalcCoeffs);
freqDistFolder.add(visualizerSettings, 'maxFreq', 0, 96000).name('Maximum frequency').onChange(recalcCoeffs);
freqDistFolder.add(visualizerSettings, 'minNote', 0, 128).name('Minimum note').onChange(recalcCoeffs);
freqDistFolder.add(visualizerSettings, 'maxNote', 0, 128).name('Maximum note').onChange(recalcCoeffs);
freqDistFolder.add(visualizerSettings, 'noteTuning', 0, 96000).name('Octave bands tuning (nearest note = tuning frequency in Hz)').onChange(recalcCoeffs);
freqDistFolder.add(visualizerSettings, 'detune', -24, 24).name('Detune').onChange(recalcCoeffs);
freqDistFolder.add(visualizerSettings, 'numBands', 2, 1920, 1).name('Number of bands').onChange(recalcCoeffs);
freqDistFolder.add(visualizerSettings, 'octaves', 1, 192).name('Bands per octave').onChange(recalcCoeffs);
freqDistFolder.add(visualizerSettings, 'fscale', {'Bark': 'bark',
'ERB': 'erb',
'Cams': 'cam',
'Mel (AIMP)': 'mel',
'Linear': 'linear',
'Logarithmic': 'logarithmic',
'Hyperbolic sine': 'sinh',
'Shifted logarithmic': 'shifted log',
'Nth root': 'nth root',
'Negative exponential': 'negative exponential',
'Adjustable Bark': 'adjustable bark',
'Period': 'period'}).name('Frequency scale').onChange(recalcCoeffs);
freqDistFolder.add(visualizerSettings, 'hzLinearFactor', 0, 100).name('Hz linear factor').onChange(recalcCoeffs);
const transformFolder = settings.addFolder('Transform algorithm');
transformFolder.add(visualizerSettings, 'analysisAlgorithm', {
'Analog-style analyzer': 'analog',
'Sliding windowed infinite Fourier transform': 'swift',
'Variable-Q sliding DFT': 'sdft'
}).name('Analysis algorithm').onChange(recalcCoeffs);
transformFolder.add(visualizerSettings, 'bandwidth', 0, 64).name('Bandwidth').onChange(recalcCoeffs);
transformFolder.add(visualizerSettings, 'order', 1, 8, 1).name('Filter order').onChange(recalcCoeffs);
transformFolder.add(visualizerSettings, 'windowFunction', {
'Rectangular': '1',
'Hann': '1, 0.5',
'Hamming': '1, 0.4259434938430786',
'Blackman': '1, 0.595257580280304, 0.0952545627951622',
'Nuttall': '1, 0.6850073933601379, 0.20272639393806458, 0.017719272524118423',
'Flat top': '1, 0.966312825679779, 0.6430955529212952, 0.19387830793857574, 0.016120079904794693',
'Custom': 'custom'
}).name('Window function').onChange(recalcCoeffs);
transformFolder.add(visualizerSettings, 'customWindow').name('Custom frequency-domain windowing coefficients').onChange(recalcCoeffs);
transformFolder.add(visualizerSettings, 'useNC').name('Use NC method (VQ-sDFT only)').onChange(recalcCoeffs);
transformFolder.add(visualizerSettings, 'prewarpQ').name('Use prewarped Q (analog-style analyzer only)').onChange(recalcCoeffs);
transformFolder.add(visualizerSettings, 'compensateBW').name('Compensate bandwidth for narrowing on higher order filters (IIR filter banks only)').onChange(recalcCoeffs);
transformFolder.add(visualizerSettings, 'timeRes', 0, 2000).name('Time resoluion').onChange(recalcCoeffs);
transformFolder.add(visualizerSettings, 'constantQ').name('Use constant-Q instead of variable-Q').onChange(recalcCoeffs);
transformFolder.add(visualizerSettings, 'maxTimeRes', 0, 8000).name('Maximum time resoluion').onChange(recalcCoeffs);
transformFolder.add(visualizerSettings, 'resetCoeffs').name('Reset coefficients');
const channelFolder = settings.addFolder('Channel configuration');
channelFolder.add(visualizerSettings, 'channelMode', {
'Mono': 'mono',
'Left': 'left',
'Right': 'right',
'Mid (sum)': 'mid',
'Side (difference)': 'side'
}).name('Channel mode');
channelFolder.add(visualizerSettings, 'channelIdx1', 0, 32, 1).name('First channel index');
channelFolder.add(visualizerSettings, 'channelIdx2', 0, 32, 1).name('Second channel index');
channelFolder.add(visualizerSettings, 'reverseIdx1').name('Reverse first channel index');
channelFolder.add(visualizerSettings, 'reverseIdx2').name('Reverse second channel index');
channelFolder.add(visualizerSettings, 'preventGainIncreaseFromChannelSum').name('Prevent gain increase on summation of multiple audio channels');
const peakFolder = settings.addFolder('Time averaging and peak decay settings');
peakFolder.add(visualizerSettings, 'useAccurateSmoothing').name('Apply time smoothing during processing').onChange(resetFIFO);
peakFolder.add(visualizerSettings, 'antiFlicker').name('Reduce flickering on fast or no smoothing settings').onChange(resetFIFO);
peakFolder.add(visualizerSettings, 'smoothingTimeConstant', 0, 100).name('Smoothing time constant'); // you can use this Desmos graph: https://www.desmos.com/calculator/ictdd2ep8g to determine the smoothing time constant value for particular dB per second decay time (e.g. to get -20dB/sec decay time, the smoothing time constant value is 96.2351% assuming 60fps)
peakFolder.add(visualizerSettings, 'useAverageSmoothing').name('Use exponential average instead of peak decay');
peakFolder.add(visualizerSettings, 'peakHold', 0, 240).name('Peak hold time');
peakFolder.add(visualizerSettings, 'peakDecay', 0, 100).name('Peak fall rate');
peakFolder.add(visualizerSettings, 'useActualPeak').name('Use actual peak');
peakFolder.add(visualizerSettings, 'fifoLength', 0, 3000).name('FIFO averaging length (milliseconds)').onChange(resetFIFO);
peakFolder.add(visualizerSettings, 'fifoDomain', {
'Linear': 'linear',
'Squared (RMS)': 'rms',
'Logarithmic': 'log'
}).name('FIFO averaging domain');
peakFolder.add(visualizerSettings, 'averagingDomain', {
'Linear': 'linear',
'Squared (RMS)': 'rms',
'Logarithmic': 'log'
}).name('Averaging domain').onChange(resetBoth);
peakFolder.add(visualizerSettings, 'resetAverages').name('Reset smoothed values and peaks');
const amplitudeFolder = settings.addFolder('Amplitude');
amplitudeFolder.add(visualizerSettings, 'useDecibels').name('Use logarithmic amplitude/decibel scale');
amplitudeFolder.add(visualizerSettings, 'useAbsolute').name('Use absolute value');
amplitudeFolder.add(visualizerSettings, 'gamma', 0.5, 10).name('Gamma');
amplitudeFolder.add(visualizerSettings, 'minDecibels', -120, 6).name('Lower amplitude range');
amplitudeFolder.add(visualizerSettings, 'maxDecibels', -120, 6).name('Higher amplitude range');
amplitudeFolder.add(visualizerSettings, 'decoupleAmplitudeFromSpectrum').name('Decouple amplitude scaling of spectrogram from spectrum');
const altAmplitudeFolder = amplitudeFolder.addFolder('Spectrogram colormap scaling');
altAmplitudeFolder.add(visualizerSettings, 'altUseDecibels').name('Use logarithmic amplitude/decibel scale');
altAmplitudeFolder.add(visualizerSettings, 'altUseAbsolute').name('Use absolute value');
altAmplitudeFolder.add(visualizerSettings, 'altGamma', 0.5, 10).name('Gamma');
altAmplitudeFolder.add(visualizerSettings, 'altMinDecibels', -120, 6).name('Lower amplitude range');
altAmplitudeFolder.add(visualizerSettings, 'altMaxDecibels', -120, 6).name('Higher amplitude range');
const labelFolder = settings.addFolder('Labels and grids');
labelFolder.add(visualizerSettings, 'showLabels').name('Show horizontal-axis labels');
labelFolder.add(visualizerSettings, 'showLabelsY').name('Show vertical-axis labels');
labelFolder.add(visualizerSettings, 'amplitudeLabelInterval', 0.5, 48).name('dB label interval');
labelFolder.add(visualizerSettings, 'showDC').name('Show DC label');
labelFolder.add(visualizerSettings, 'showNyquist').name('Show Nyquist frequency label');
labelFolder.add(visualizerSettings, 'mirrorLabels').name('Mirror Y-axis labels');
labelFolder.add(visualizerSettings, 'spectrogramExtendGrid').name('Extend spectrogram gridlines into screen size');
labelFolder.add(visualizerSettings, 'labelTextAlign', {
'Start': 'start',
'Center': 'center',
'End': 'end'
}).name('Frequency label text alignment');
labelFolder.add(visualizerSettings, 'labelTextBaseline', {
'Alphabetic': 'alphabetic',
'Middle': 'middle',
'Hanging': 'hanging'
}).name('dB label text alignment');
labelFolder.add(visualizerSettings, 'labelTextBaseline2', {
'Alphabetic': 'alphabetic',
'Middle': 'middle',
'Hanging': 'hanging'
}).name('Spectrogram frequency label text alignment');
labelFolder.add(visualizerSettings, 'diffLabels').name('Use difference coloring for labels');
labelFolder.add(visualizerSettings, 'labelMode', {
'Decades': 'decade',
'Decades (coarse)': 'decade 2',
'Decades (without minor gridlines)': 'decade 3',
'Octaves': 'octave',
'Powers of two': 'powers of two',
'Notes': 'note',
'Critical bands': 'bark',
'Linear': 'linear',
'Automatic': 'auto'
}).name('Frequency label mode');
labelFolder.add(visualizerSettings, 'labelTuning', 0, 96000).name('Note labels tuning (nearest note = tuning frequency in Hz)');
const calibrationFolder = labelFolder.addFolder('Calibration line');
calibrationFolder.add(visualizerSettings, 'showCalibration').name('Show calibration line');
calibrationFolder.add(visualizerSettings, 'calibrationSrc', {
'Main': 'main',
'FIFO average': 'avg',
'Cumulative average': 'cumulative',
'Peaks': 'peaks'
}).name('Calibration line calculation source');
calibrationFolder.add(visualizerSettings, 'calibrationDomain', {
'Linear': 'linear',
'Squared (RMS)': 'rms',
'Logarithmic': 'log'
}).name('Calibration line calculation domain');
const appearanceFolder = settings.addFolder('Appearance');
appearanceFolder.add(visualizerSettings, 'display', {
'Spectrum': 'spectrum',
'Spectrogram': 'spectrogram',
'Static spectrogram': 'static',
'Combined spectrum and spectrogram': 'both'
}).name('Display which').onChange(resizeCanvas);
appearanceFolder.add(visualizerSettings, 'hopSize', 32, 32768, 1).name('Spectrogram hop length (samples)');
appearanceFolder.add(visualizerSettings, 'showMain').name('Show main graph');
appearanceFolder.add(visualizerSettings, 'showPeaks').name('Show peaks');
appearanceFolder.add(visualizerSettings, 'fadingPeaks').name('Enable peak fading effect');
appearanceFolder.add(visualizerSettings, 'showAverage').name('Show infinite average (cumulative) spectrum');
appearanceFolder.add(visualizerSettings, 'showRMS').name('Show RMS spectrum');
appearanceFolder.add(visualizerSettings, 'useGradient').name('Use color gradient');
appearanceFolder.add(visualizerSettings, 'alternateColor').name('Use alternate color gradient');
appearanceFolder.add(visualizerSettings, 'peakHeight', 0.5, 32).name('Peak indicator height');
appearanceFolder.add(visualizerSettings, 'barSpacing', 0, 1024).name('Bar spacing');
appearanceFolder.add(visualizerSettings, 'spacingMode', ['rough', 'smooth', 'pixel perfect']).name('Bar spacing mode');
appearanceFolder.add(visualizerSettings, 'centerBars').name('Center bars');
appearanceFolder.add(visualizerSettings, 'drawLines').name('Draw lines/area graphs instead of bars');
appearanceFolder.add(visualizerSettings, 'lineWidth', 0.5, 10).name('Line width');
appearanceFolder.add(visualizerSettings, 'lineJoin', {
'Miter': 'miter',
'Round': 'round',
'Bevel': 'bevel'
}).name('Line join');
appearanceFolder.add(visualizerSettings, 'miterLimit', 1, 100).name('Line miter limit');
appearanceFolder.add(visualizerSettings, 'drawMode', drawModes).name('Main graph draw mode');
appearanceFolder.add(visualizerSettings, 'drawMode2', drawModes).name('Peak draw mode');
appearanceFolder.add(visualizerSettings, 'drawMode3', drawModes).name('Average draw mode');
appearanceFolder.add(visualizerSettings, 'darkMode').name('Dark mode');
settings.add(visualizerSettings, 'autoReset').name('Enable auto-reset');
settings.add(visualizerSettings, 'useIncorrectWay').name('Use getFloatTimeDomainData instead of AudioWorklet').onChange(resetFIFO);
settings.add(visualizerSettings, 'fftSize', 32, 32768, 1).name('getFloatTimeDomainData buffer length (samples)');
settings.add(visualizerSettings, 'pauseAverage').name('Freeze infinite average spectrum');
settings.add(visualizerSettings, 'freezeFIFO').name('Freeze FIFO average spectrum');
settings.add(visualizerSettings, 'freeze').name('Freeze analyzer');
settings.add(visualizerSettings, 'resetBoth').name('Reset both coefficients and smoothing');
//settings.add(visualizerSettings, 'compensateDelay').name('Compensate for delay');
gui.add(loader, 'toggleFullscreen').name('Toggle fullscreen mode');
function resetBoth() {
resetSmoothedValues();
recalcCoeffs();
}
function autoReset() {
if (visualizerSettings.autoReset && !visualizerSettings.freeze)
resetBoth();
}
// this below makes it more faithful to how foobar2000 visualizations work
audioPlayer.addEventListener('play', autoReset);
audioPlayer.addEventListener('seeked', autoReset);
function resetSmoothedValues() {
cumulativeIdx = 0;
fifoIdx = 0;
auxCtx.clearRect(0, 0, canvas.width, canvas.height);
accumulatedData.length = 0;
sampleCounter = 0;
updateSpectrumVisualization([]);
updateAccumulatedSpectrum([]);
staticSpectrogramIdx = 0;
}
function resetFIFO() {
fifoIdx = 0;
fifoBuffers.length = 0;
}
function recalcCoeffs() {
switch(visualizerSettings.freqDist) {
case 'octaves':
freqBands = generateOctaveBands(visualizerSettings.octaves, visualizerSettings.minNote, visualizerSettings.maxNote, visualizerSettings.detune, visualizerSettings.noteTuning);
break;
default:
freqBands = generateFreqBands(visualizerSettings.numBands, visualizerSettings.minFreq, visualizerSettings.maxFreq, visualizerSettings.fscale, visualizerSettings.hzLinearFactor/100);
}
const windowingKernel = parseList(visualizerSettings.windowFunction === 'custom' ? visualizerSettings.customWindow : visualizerSettings.windowFunction),
timeRes = visualizerSettings.constantQ ? Infinity : visualizerSettings.timeRes,
iirArgs = [freqBands, visualizerSettings.order, timeRes, visualizerSettings.bandwidth, audioCtx.sampleRate, visualizerSettings.compensateBW, visualizerSettings.prewarpQ],
firArgs = [freqBands, windowingKernel, timeRes, visualizerSettings.bandwidth, Math.round(audioCtx.sampleRate*visualizerSettings.maxTimeRes/1000), audioCtx.sampleRate, visualizerSettings.useNC];
analogStyleAnalyser.calcCoeffs([]);
swift.calcCoeffs([]);
sdft.calcCoeffs([]);
switch (visualizerSettings.analysisAlgorithm) {
case 'analog':
analogStyleAnalyser.calcCoeffs(...iirArgs);
case 'swift':
swift.calcCoeffs(...iirArgs);
default:
sdft.calcCoeffs(...firArgs);
}
}
recalcCoeffs();
function resizeCanvas() {
const scale = devicePixelRatio,
isFullscreen = document.fullscreenElement === canvas;
canvas.width = (isFullscreen ? innerWidth : container.clientWidth)*scale;
canvas.height = (isFullscreen ? innerHeight : container.clientHeight)*scale;
auxCanvas.width = canvas.width;
auxCanvas.height = visualizerSettings.display === 'both' ? Math.trunc(canvas.height/2) : canvas.height;
staticSpectrogramIdx = 0;
}
addEventListener('click', () => {
if (audioCtx.state == 'suspended')
audioCtx.resume();
});
addEventListener('resize', resizeCanvas);
resizeCanvas();
function loadLocalFile(event) {
const file = event.target.files[0],
reader = new FileReader();
reader.onload = (e) => {
audioPlayer.src = e.target.result;
audioPlayer.play();
};
reader.readAsDataURL(file);
}
//visualize();
audioCtx.audioWorklet.addModule(dspSourceUrl).then(() => {
//let messageCounter = 0;
audioProvider = new AudioWorkletNode(audioCtx, 'audio-provider');
audioSource.connect(audioProvider);
audioProvider.port.postMessage(0);
audioProvider.port.onmessage = (e) => {
if (!visualizerSettings.freeze && !visualizerSettings.useIncorrectWay)
analyzeChunk(e.data.currentChunk);
audioProvider.port.postMessage(1);
//if (messageCounter < 1) {
// console.log(e.data.currentChunk);
//}
//messageCounter++;
};
audioProvider.onprocessorerror = (e) => {
console.log(e.message);
}
// optional mic input
/*navigator.mediaDevices.getUserMedia({
audio: {
noiseCancellation: false,
echoCancellation: false,
autoGainControl: false
},
video: false
}).then((stream) => {
const audioStream = audioCtx.createMediaStreamSource(stream);
audioStream.connect(analyser);
audioStream.connect(audioProvider); // for use with AudioWorklet-based visualizations
}).catch((err) => {
console.log(err);
});*/
visualize();
}).catch((e) => {
console.log(e.message);
});
let hasUpdatedSince = false;
function analyzeChunk(data) {
const dataset = [],
isSpectrogram = visualizerSettings.display === 'spectrogram' || visualizerSettings.display === 'static' || visualizerSettings.display === 'both';
let retrievalLength = 0;
for (const x of data) {
retrievalLength = Math.max(retrievalLength, x.length);
}
for (let i = 0; i < retrievalLength; i++) {
let sum = 0,
channelDivisor = 1;
const i1 = visualizerSettings.channelIdx1,
idx1 = idxWrapOver(visualizerSettings.reverseIdx1 ? data.length-i1-1 : i1, data.length),
i2 = visualizerSettings.channelIdx2,
idx2 = idxWrapOver(visualizerSettings.reverseIdx2 ? data.length-i2-1 : i2, data.length),
pairIndices = [isFinite(idx1) ? idx1 : 0, isFinite(idx2) ? idx2 : 0];
switch (visualizerSettings.channelMode) {
default:
for (let channelIdx = 0; channelIdx < data.length; channelIdx++) {
sum += data[channelIdx][i];
}
channelDivisor = data.length;
break;
case 'left':
case 'right':
case 'mid':
case 'side':
channelDivisor = visualizerSettings.channelMode === 'left' || visualizerSettings.channelMode === 'right' ? 1 : 2;
const l = data[pairIndices[0]][i],
r = data[pairIndices[1]][i];
sum = visualizerSettings.channelMode === 'left' ? l : visualizerSettings.channelMode === 'right' ? r : l + r * (visualizerSettings.channelMode === 'side' ? -1 : 1);
}
dataset[i] = sum/(visualizerSettings.preventGainIncreaseFromChannelSum ? channelDivisor : 1);
if (visualizerSettings.useAccurateSmoothing) {
getKindofsDFT().analyze([isFinite(dataset[i]) ? dataset[i] : 0]);
const spectrumData = getKindofsDFT().spectrumData,
spectrumLength = spectrumData.length;
if (isSpectrogram) {
accumulatedData.length = spectrumLength;
for (let i = 0; i < spectrumLength; i++) {
accumulatedData[i] = Math.max(isFinite(accumulatedData[i]) ? accumulatedData[i] : 0, spectrumData[i]);
}
sampleCounter++;
}
updateSpectrumVisualization(spectrumData, true);
updateAccumulatedSpectrum(currentSpectrum);
if (sampleCounter >= visualizerSettings.hopSize && isSpectrogram) {
printSpectrogram(accumulatedData);
accumulatedData = accumulatedData.map((_) => 0);
sampleCounter = 0;
}
}
}
if (dataset.length > 0 && !visualizerSettings.useAccurateSmoothing) {
getKindofsDFT().analyze(dataset.map(x => isFinite(x) ? x : 0));
const spectrum = getKindofsDFT().spectrumData;
if (isSpectrogram)
printSpectrogram(spectrum);
updateAccumulatedSpectrum(spectrum);
}
if (dataset.length > 0)
hasUpdatedSince = true;
}
function getKindofsDFT() {
switch(visualizerSettings.analysisAlgorithm) {
case 'analog':
return analogStyleAnalyser;
case 'swift':
return swift;
default:
return sdft;
}
}
function visualize() {
delay.delayTime.value = 0//(visualizerSettings.fftSize / audioCtx.sampleRate) * visualizerSettings.compensateDelay;
if (!visualizerSettings.freeze) {
// we use getFloatTimeDomainData (which is PCM data that is gathered, just like vis_stream::get_chunk_absolute() in foobar2000 SDK)
if (visualizerSettings.useIncorrectWay) {
analyser.getFloatTimeDomainData(dataArray);
const fftData = [];
for (let i = 0; i < visualizerSettings.fftSize; i++) {
fftData[i] = dataArray[i+analyser.fftSize-visualizerSettings.fftSize];
}
analyzeChunk([fftData]);
}
/*
const spectrumData = getKindofsDFT().spectrumData;
*/
if (currentSampleRate !== audioCtx.sampleRate)
recalcCoeffs();
/*
currentSpectrum.length = spectrumData.length;
for (let i = 0; i < spectrumData.length; i++) {
currentSpectrum[i] = spectrumData[i];
}
*/
if (!hasUpdatedSince) {
updateAccumulatedSpectrum(lastAccumulatedSpectrum);
}
if (!visualizerSettings.useAccurateSmoothing)
updateSpectrumVisualization(visualizerSettings.antiFlicker ? accumulatedSpectrum : getKindofsDFT().spectrumData);
}
const fgColor = visualizerSettings.darkMode ? (visualizerSettings.useGradient || visualizerSettings.alternateColor ? '#c0c0c0' : '#fff') : '#000',
bgColor = visualizerSettings.darkMode ? (visualizerSettings.useGradient || visualizerSettings.alternateColor ? '#202020' : '#000') : '#fff',
isSpectrogramOnly = visualizerSettings.display === 'spectrogram' || visualizerSettings.display === 'static' ,
isSpectrogram = visualizerSettings.display === 'spectrogram' || visualizerSettings.display === 'static' || visualizerSettings.display === 'both',
isSpectrumandSpectrogram = visualizerSettings.display === 'both',
shownAverage = visualizerSettings.showAverage || visualizerSettings.showRMS,
shownInfOnly = visualizerSettings.showAverage && !visualizerSettings.showRMS,
shownCalibration = visualizerSettings.showCalibration,
calibrationSrc = visualizerSettings.calibrationSrc;
let grad = fgColor;
if (visualizerSettings.useGradient) {
if (visualizerSettings.alternateColor) {
grad = ctx.createLinearGradient(0, 0, canvas.width, 0);
grad.addColorStop(0/4, '#f00');
grad.addColorStop(1/4, '#ff8000');
grad.addColorStop(2/4, '#0f0');
grad.addColorStop(3/4, '#0ff');
grad.addColorStop(4/4, '#00f');
}
else {
grad = ctx.createLinearGradient(0, 0, 0, isSpectrumandSpectrogram ? canvas.height/2 : canvas.height);
// color gradient derived from foobar2000
grad.addColorStop(0, visualizerSettings.darkMode ? '#569cd6' : 'rgb(0, 102, 204)');
if (!shownAverage)
grad.addColorStop(1, visualizerSettings.darkMode ? '#c0c0c0' : '#000');
}
}
let averageValues = [],
rmsValues = [],
audioSpectrum = [],
calibrationData = [];
if (!isSpectrogramOnly) {
if (visualizerSettings.showMain || (calibrationSrc === 'main' && shownCalibration)) {
audioSpectrum = visualizerSettings.antiFlicker && visualizerSettings.useAccurateSmoothing ? accumulatedSpectrum : currentSpectrum;
}
if (visualizerSettings.showAverage || (calibrationSrc === 'cumulative' && shownCalibration)) {
averageValues = averageSpectrum.map(x => {
switch (visualizerSettings.averagingDomain) {
case 'rms':
return Math.sqrt(x) * 2;
case 'log':
return 10 ** (x/20) * 2;
default:
return x * 2;
}
});
}
if (visualizerSettings.showRMS || (calibrationSrc === 'avg' && shownCalibration)) {
const fifoLength = fifoBuffers.length > 0 && fifoBuffers[0] !== undefined ? fifoBuffers[0].length : 1;
rmsValues = fifoBuffers.map(x => {
if (x === undefined)
return 0;
const average = x.reduce((acc, curr) => {
const current = isFinite(curr) ? curr : 0;
switch (visualizerSettings.fifoDomain) {
case 'rms':
return acc + current ** 2;
case 'log':
return acc + 20*Math.log10(current);
default:
return acc + current;
}
}, 0);
switch (visualizerSettings.fifoDomain) {
case 'rms':
return Math.sqrt(average / fifoLength) * 2;
case 'log':
return 10 ** (average/fifoLength/20) * 2;
default:
return average / fifoLength * 2;
}
});
}
switch (calibrationSrc) {
case 'avg':
calibrationData = rmsValues;
break;
case 'cumulative':
calibrationData = averageValues;
break;
case 'peaks':
calibrationData = peaks;
break;
default:
calibrationData = audioSpectrum;
}
}
ctx.globalCompositeOperation = 'source-over';
ctx.fillStyle = bgColor;
ctx.fillRect(0, 0, canvas.width, canvas.height);
if (visualizerSettings.showPeaks && !isSpectrogramOnly && visualizerSettings.drawMode2 !== 'stroke') {
ctx.fillStyle = fgColor;
ctx.strokeStyle = fgColor;
drawGraph(peaks.map(x => x*2), false, visualizerSettings.fadingPeaks && !visualizerSettings.drawLines ? peakHolds.map(x => x/2) : 0.5);
}
ctx.fillStyle = grad;
ctx.strokeStyle = grad;
if (!isSpectrogramOnly && visualizerSettings.showMain) {
drawGraph(audioSpectrum.map(x => x*2), visualizerSettings.drawMode === 'stroke', (shownAverage && !(visualizerSettings.alternateColor && visualizerSettings.useGradient) && visualizerSettings.drawMode !== 'stroke') || visualizerSettings.drawMode === 'both' ? 0.5 : 1);
if (visualizerSettings.drawMode === 'both')
drawGraph(audioSpectrum.map(x => x*2), true, 1);
}
/*
for (let i = 0; i < currentSpectrum.length; i++) {
ctx.fillRect(i*canvas.width/currentSpectrum.length+1, canvas.height, canvas.width/currentSpectrum.length-2, -map(ascale(currentSpectrum[i]*2), 0, 1, 0, canvas.height));
}
*/
ctx.fillStyle = fgColor;
ctx.strokeStyle = fgColor;
if (visualizerSettings.showPeaks && !isSpectrogramOnly && visualizerSettings.drawMode2 !== 'fill') {
drawGraph(peaks.map(x => x*2), true, visualizerSettings.fadingPeaks ? peakHolds : 1);
/*
for (let i = 0; i < peaks.length; i++) {
ctx.globalAlpha = visualizerSettings.fadingPeaks ? peakHolds[i] / (visualizerSettings.peakHold * (visualizerSettings.useAccurateSmoothing ? audioCtx.sampleRate/60 : 1)) : 1;
ctx.fillRect(i*canvas.width/peaks.length+1, map(ascale(peaks[i]*2), 0, 1, canvas.height, 0), canvas.width/peaks.length-2, 2);
}
*/
}
ctx.fillStyle = visualizerSettings.showRMS && visualizerSettings.showAverage ? (visualizerSettings.darkMode ? '#fff' : '#000') : visualizerSettings.drawMode3 === 'both' ? '#202020' : visualizerSettings.alternateColor && visualizerSettings.useGradient && visualizerSettings.drawMode3 !== 'stroke' ? '#888' : fgColor;
ctx.strokeStyle = ctx.fillStyle;
if (visualizerSettings.showAverage && !isSpectrogramOnly) {
drawGraph(averageValues, !shownInfOnly || visualizerSettings.drawMode3 === 'stroke', shownInfOnly && visualizerSettings.showMain && visualizerSettings.drawMode3 !== 'stroke' ? 0.5 : 1);
if (visualizerSettings.drawMode3 === 'both' && shownInfOnly) {
ctx.fillStyle = visualizerSettings.darkMode ? '#fff' : '#000';
ctx.strokeStyle = ctx.fillStyle;
drawGraph(averageValues, true, 1);
}
}
ctx.fillStyle = visualizerSettings.drawMode3 === 'both' ? '#202020' : visualizerSettings.alternateColor && visualizerSettings.useGradient && visualizerSettings.drawMode3 !== 'stroke' ? '#888' : fgColor;
ctx.strokeStyle = ctx.fillStyle;
if (visualizerSettings.showRMS && !isSpectrogramOnly) {
drawGraph(rmsValues, visualizerSettings.drawMode3 === 'stroke', (visualizerSettings.showMain || visualizerSettings.showAverage || visualizerSettings.drawMode3 === 'both') && visualizerSettings.drawMode3 !== 'stroke' ? 0.5 : 1);
if (visualizerSettings.drawMode3 === 'both') {
ctx.fillStyle = visualizerSettings.darkMode ? '#fff' : '#000';
ctx.strokeStyle = ctx.fillStyle;
drawGraph(rmsValues, true, 1);
}
}
/*
for (let i = 0; i < 24; i++) {
let sum = 0;
for (let j = 0; j < currentSpectrum.length/24; j++) {
sum += currentSpectrum[i+j*24] ** 2;
}
ctx.fillRect(i*canvas.width/24+1, canvas.height, canvas.width/24 - 2, -Math.min(Math.sqrt(sum)*canvas.height*Math.SQRT2, canvas.height/2));
}
*/
ctx.globalAlpha = 1;
ctx.globalCompositeOperation = 'source-over';
ctx.fillStyle = bgColor;
if (isSpectrumandSpectrogram)
ctx.fillRect(0, canvas.height/2, canvas.width, canvas.height/2);
if (auxCanvas.width > 0 && auxCanvas.height > 0 && isSpectrogram)
ctx.drawImage(auxCanvas, 0, canvas.height-auxCanvas.height);
ctx.globalCompositeOperation = visualizerSettings.diffLabels ? 'difference' : 'source-over';
ctx.fillStyle = visualizerSettings.diffLabels ? '#fff' : fgColor;
ctx.strokeStyle = visualizerSettings.diffLabels ? '#fff' : fgColor;
// label part
ctx.font = `${Math.trunc(10*devicePixelRatio)}px sans-serif`;
ctx.textAlign = visualizerSettings.labelTextAlign //'start';
ctx.textBaseline = isSpectrumandSpectrogram ? visualizerSettings.labelTextBaseline2 : 'alphabetic';
// Frequency label part
if (visualizerSettings.showLabels || visualizerSettings.showDC || visualizerSettings.showNyquist) {
ctx.globalAlpha = 0.5;
ctx.setLineDash([]);
const freqLabels = [],
isNote = visualizerSettings.labelMode === 'note',
notes = ['C', 'C#', 'D', 'D#', 'E', 'F', 'F#', 'G', 'G#', 'A', 'A#', 'B'],
minLabelRange = freqBands.length > 0 ? freqBands[0].ctr : 0,
maxLabelRange = freqBands.length > 0 ? freqBands[freqBands.length-1].ctr : 0,
labelScale = visualizerSettings.freqDist === 'octaves' ? 'log' : visualizerSettings.fscale,
hzLinearFactor = visualizerSettings.hzLinearFactor/100;
let freqsTable;
switch(visualizerSettings.labelMode) {
case 'decade':
freqsTable = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 20000];
break;
case 'decade 2':
freqsTable = [10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000];
break;
case 'decade 3':
freqsTable = [10, 100, 1000, 10000];
break;
case 'octave':
freqsTable = [31, 63.5, 125, 250, 500, 1000, 2000, 4000, 8000, 16000];
break;
case 'powers of two':
freqsTable = [32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384];
break;
case 'note':
freqsTable = generateOctaveBands(12, 0, 132, 0, visualizerSettings.labelTuning).map(x => x.ctr);
break;
case 'bark':
freqsTable = [50, 150, 250, 350, 450, 570, 700, 840, 1000, 1170, 1370, 1600, 1850, 2150, 2500, 2900, 3400, 4000, 4800, 5800, 7000, 8500, 10500, 13500];
break;
case 'linear':
freqsTable = [1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 11000, 12000, 13000, 14000, 15000, 16000, 17000, 18000, 19000, 20000];
break;
default:
freqsTable = freqBands.map(x => x.ctr);
}
if (visualizerSettings.showLabels)
freqLabels.push(...freqsTable);
if (visualizerSettings.showDC)
freqLabels.push(0);
if (visualizerSettings.showNyquist)
freqLabels.push(audioCtx.sampleRate/2);
freqLabels.map(x => {
const note = isFinite(Math.log2(x)) ? notes[idxWrapOver(Math.round(Math.log2(x)*12), notes.length)] : 'DC',
isSharp = note.includes('#'),
isC = note === 'C';
ctx.globalAlpha = isNote ? (isSharp ? 0.2 : isC ? 0.8 : 0.5) : 0.5;
const label = x === audioCtx.sampleRate/2 && visualizerSettings.showNyquist ? 'Nyquist' : isNote || x === 0 ? `${note}${isC ? Math.trunc(Math.log2(x)-4) : ''}` : (x >= 1000) ? `${x / 1000}kHz` : `${x}Hz`,
posX = map(fscale(x, labelScale, hzLinearFactor), fscale(minLabelRange, labelScale, hzLinearFactor), fscale(maxLabelRange, labelScale, hzLinearFactor), 1/freqBands.length/2, 1 - 1/freqBands.length/2),
lineWidth = 10*devicePixelRatio*ctx.globalAlpha;
ctx.beginPath();
if (isSpectrogramOnly) {
if (!visualizerSettings.spectrogramExtendGrid)
ctx.globalAlpha = 1;
ctx.lineTo(visualizerSettings.spectrogramExtendGrid ? 0 : visualizerSettings.mirrorLabels ? canvas.width : 0, canvas.height-posX*canvas.height);
ctx.lineTo(visualizerSettings.spectrogramExtendGrid ? canvas.width : visualizerSettings.mirrorLabels ? canvas.width-lineWidth : lineWidth, canvas.height-posX*canvas.height);
}
else {
ctx.lineTo(posX*canvas.width, isSpectrumandSpectrogram ? canvas.height/2 : canvas.height);
ctx.lineTo(posX*canvas.width, 0);
}
ctx.stroke();
ctx.globalAlpha = 1;
if (isSpectrogramOnly) {
ctx.textAlign = visualizerSettings.mirrorLabels ? 'end' : 'start';
ctx.fillText(label, visualizerSettings.mirrorLabels ? canvas.width : 0, canvas.height-posX*canvas.height);
}
else
ctx.fillText(label, posX*canvas.width, isSpectrumandSpectrogram ? canvas.height/2 : canvas.height);
});
ctx.setLineDash([]);
ctx.globalAlpha = 1;
ctx.textAlign = 'start';
ctx.textBaseline = 'alphabetic';
}
// Amplitude/decibel label part
if ((visualizerSettings.showLabelsY || shownCalibration) && !isSpectrogramOnly) {
const dBLabelData = [],
mindB = Math.min(visualizerSettings.minDecibels, visualizerSettings.maxDecibels),
maxdB = Math.max(visualizerSettings.minDecibels, visualizerSettings.maxDecibels),
minLabelIdx = Math.round(mindB/visualizerSettings.amplitudeLabelInterval),
maxLabelIdx = Math.round(maxdB/visualizerSettings.amplitudeLabelInterval);
if (visualizerSettings.showLabelsY) {
dBLabelData.push({value: -Infinity,
alpha: 0.5});
if (isFinite(minLabelIdx) && isFinite(maxLabelIdx)) {
for (let i = maxLabelIdx; i >= minLabelIdx; i--) {
dBLabelData.push({value: i*visualizerSettings.amplitudeLabelInterval,
alpha: 0.5});
}
}
}
if (shownCalibration) {
dBLabelData.push({value: 20*Math.log10(calcCalibrationLine(calibrationData, visualizerSettings.calibrationDomain)),
alpha: 1});
}
ctx.globalAlpha = 0.5;
ctx.setLineDash([]);
ctx.textBaseline = visualizerSettings.labelTextBaseline;
dBLabelData.map(v => {
const x = v.value;
ctx.globalAlpha = v.alpha;
const label = `${x}dB`,
posY = map(ascale(10 ** (x/20)), 0, 1, isSpectrumandSpectrogram ? canvas.height/2 : canvas.height, 0);
if (ascale(10 ** (x/20)) >= 0 || !isSpectrumandSpectrogram) {
ctx.beginPath();
ctx.lineTo(0, posY);
ctx.lineTo(canvas.width, posY);
ctx.stroke();
ctx.globalAlpha = 1;
ctx.textAlign = visualizerSettings.mirrorLabels ? 'end' : 'start'
ctx.fillText(label, canvas.width * visualizerSettings.mirrorLabels, posY);
}
});
ctx.setLineDash([]);
ctx.globalAlpha = 1;
ctx.textAlign = 'start';
ctx.textBaseline = 'alphabetic';
}
// reset the accumulated spectrum
if (!visualizerSettings.freeze) {
hasUpdatedSince = false;
lastAccumulatedSpectrum = accumulatedSpectrum.map(x => x);
updateAccumulatedSpectrum([]);
}
requestAnimationFrame(visualize);
currentSampleRate = audioCtx.sampleRate;
}
// and here's the additional functions that we can need for this visualization
function applyWindow(posX, windowType = 'Hann', windowParameter = 1, truncate = true, windowSkew = 0) {
let x = windowSkew > 0 ? ((posX/2-0.5)/(1-(posX/2-0.5)*10*(windowSkew ** 2)))/(1/(1+10*(windowSkew ** 2)))*2+1 :
((posX/2+0.5)/(1+(posX/2+0.5)*10*(windowSkew ** 2)))/(1/(1+10*(windowSkew ** 2)))*2-1;
if (truncate && Math.abs(x) > 1)
return 0;
switch (windowType.toLowerCase()) {
default:
return 1;
case 'hanning':
case 'cosine squared':
case 'hann':
return Math.cos(x*Math.PI/2) ** 2;
case 'raised cosine':
case 'hamming':
return 0.54 + 0.46 * Math.cos(x*Math.PI);
case 'power of sine':
return Math.cos(x*Math.PI/2) ** windowParameter;
case 'circle':
case 'power of circle':
return Math.sqrt(1 - (x ** 2)) ** windowParameter;
case 'tapered cosine':
case 'tukey':
return Math.abs(x) <= 1-windowParameter ? 1 :
(x > 0 ?
(-Math.sin((x-1)*Math.PI/windowParameter/2)) ** 2 :
Math.sin((x+1)*Math.PI/windowParameter/2) ** 2);
case 'blackman':
return 0.42 + 0.5 * Math.cos(x*Math.PI) + 0.08 * Math.cos(x*Math.PI*2);
case 'nuttall':
return 0.355768 + 0.487396 * Math.cos(x*Math.PI) + 0.144232 * Math.cos(2*x*Math.PI) + 0.012604 * Math.cos(3*x*Math.PI);
case 'flat top':
case 'flattop':
return 0.21557895 + 0.41663158 * Math.cos(x*Math.PI) + 0.277263158 * Math.cos(2*x*Math.PI) + 0.083578947 * Math.cos(3*x*Math.PI) + 0.006947368 * Math.cos(4*x*Math.PI);
case 'kaiser':
return Math.cosh(Math.sqrt(1-(x ** 2))*(windowParameter ** 2))/Math.cosh(windowParameter ** 2);
case 'gauss':
case 'gaussian':
return Math.exp(-(windowParameter ** 2)*(x ** 2));
case 'cosh':
case 'hyperbolic cosine':
return Math.E ** (-(windowParameter ** 2)*(Math.cosh(x)-1));
case 'bartlett':
case 'triangle':
case 'triangular':
return 1 - Math.abs(x);
case 'poisson':
case 'exponential':
return Math.exp(-Math.abs(x * (windowParameter ** 2)));
case 'hyperbolic secant':
case 'sech':
return 1/Math.cosh(x * (windowParameter ** 2));
case 'quadratic spline':
return Math.abs(x) <= 0.5 ? -((x*Math.sqrt(2)) ** 2)+1 : (Math.abs(x*Math.sqrt(2))-Math.sqrt(2)) ** 2;
case 'parzen':
return Math.abs(x) > 0.5 ? -2 * ((-1 + Math.abs(x)) ** 3) : 1 - 24 * (Math.abs(x/2) ** 2) + 48 * (Math.abs(x/2) ** 3);
case 'welch':
return 1 - (x ** 2);
case 'ogg':
case 'vorbis':
return Math.sin(Math.PI/2 * Math.cos(x*Math.PI/2) ** 2);
case 'cascaded sine':
case 'cascaded cosine':
case 'cascaded sin':
case 'cascaded cos':
return 1 - Math.sin(Math.PI/2 * Math.sin(x*Math.PI/2) ** 2);
}
}
function fscale(x, freqScale = 'logarithmic', freqSkew = 0.5) {
switch(freqScale.toLowerCase()) {
default:
return x;
case 'log':
case 'logarithmic':
return Math.log2(x);
case 'mel':
return Math.log2(1+x/700);
case 'critical bands':
case 'bark':
return (26.81*x)/(1960+x)-0.53;
case 'equivalent rectangular bandwidth':
case 'erb':
return Math.log2(1+0.00437*x);
case 'cam':
case 'cams':
return Math.log2((x/1000+0.312)/(x/1000+14.675));
case 'sinh':
case 'arcsinh':
case 'asinh':
return Math.asinh(x/(10 ** (freqSkew*4)));
case 'shifted log':
case 'shifted logarithmic':
return Math.log2((10 ** (freqSkew*4))+x);
case 'nth root':
return x ** (1/(11-freqSkew*10));
case 'negative exponential':
return -(2 ** (-x/(2 ** (7+freqSkew*8))));
case 'adjustable bark':
return (26.81 * x)/((10 ** (freqSkew*4)) + x);
case 'period':
return 1/x;
}
}
function invFscale(x, freqScale = 'logarithmic', freqSkew = 0.5) {
switch(freqScale.toLowerCase()) {
default:
return x;
case 'log':
case 'logarithmic':
return 2 ** x;
case 'mel':
return 700 * ((2 ** x) - 1);
case 'critical bands':
case 'bark':
return 1960 / (26.81/(x+0.53)-1);
case 'equivalent rectangular bandwidth':
case 'erb':
return (1/0.00437) * ((2 ** x) - 1);
case 'cam':
case 'cams':
return (14.675 * (2 ** x) - 0.312)/(1-(2 ** x)) * 1000;
case 'sinh':
case 'arcsinh':
case 'asinh':
return Math.sinh(x)*(10 ** (freqSkew*4));
case 'shifted log':
case 'shifted logarithmic':
return (2 ** x) - (10 ** (freqSkew*4));
case 'nth root':
return x ** ((11-freqSkew*10));
case 'negative exponential':
return -Math.log2(-x)*(2 ** (7+freqSkew*8));
case 'adjustable bark':
return (10 ** (freqSkew*4)) / (26.81 / x - 1);
case 'period':
return 1/x;
}
}
function generateFreqBands(N = 128, low = 20, high = 20000, freqScale, freqSkew, bandwidth = 0.5) {
let freqArray = [];
for (let i = 0; i < N; i++) {
freqArray.push({
lo: invFscale( map(i-bandwidth, 0, N-1, fscale(low, freqScale, freqSkew), fscale(high, freqScale, freqSkew)), freqScale, freqSkew),
ctr: invFscale( map(i, 0, N-1, fscale(low, freqScale, freqSkew), fscale(high, freqScale, freqSkew)), freqScale, freqSkew),
hi: invFscale( map(i+bandwidth, 0, N-1, fscale(low, freqScale, freqSkew), fscale(high, freqScale, freqSkew)), freqScale, freqSkew)
});
}
return freqArray;
}
function generateOctaveBands(bandsPerOctave = 12, lowerNote = 4, higherNote = 123, detune = 0, tuningFreq = 440, bandwidth = 0.5) {
const tuningNote = isFinite(Math.log2(tuningFreq)) ? Math.round((Math.log2(tuningFreq)-4)*12)*2 : 0,
root24 = 2 ** ( 1 / 24 ),
c0 = tuningFreq * root24 ** -tuningNote, // ~16.35 Hz
groupNotes = 24/bandsPerOctave;
let bands = [];
for (let i = Math.round(lowerNote*2/groupNotes); i <= Math.round(higherNote*2/groupNotes); i++) {
bands.push({
lo: c0 * root24 ** ((i-bandwidth)*groupNotes+detune),
ctr: c0 * root24 ** (i*groupNotes+detune),
hi: c0 * root24 ** ((i+bandwidth)*groupNotes+detune)
});
}
return bands;
}
function ascale(x, alt = false) {
const minDecibels = alt ? visualizerSettings.altMinDecibels : visualizerSettings.minDecibels,
maxDecibels = alt ? visualizerSettings.altMaxDecibels : visualizerSettings.maxDecibels,
useAbsolute = alt ? visualizerSettings.altUseAbsolute : visualizerSettings.useAbsolute,
gamma = alt ? visualizerSettings.altGamma : visualizerSettings.gamma,
useDecibels = alt ? visualizerSettings.altUseDecibels : visualizerSettings.useDecibels;
if (useDecibels)
return map(20*Math.log10(x), minDecibels, maxDecibels, 0, 1);
else
return map(x ** (1/gamma), !useAbsolute * (10 ** (minDecibels/20)) ** (1/gamma), (10 ** (maxDecibels/20)) ** (1/gamma), 0, 1);
}
function parseList(string) {
return string.split(',').map(x => isNaN(x) ? 0 : parseFloat(x));
}
function updateSpectrumVisualization(data, inAudioContext = false) {
if (currentSpectrum.length !== data.length || averageSpectrum.length !== data.length || fifoBuffers.length !== data.length) {
currentSpectrum.length = data.length;
averageSpectrum.length = data.length;
fifoBuffers.length = data.length;
}
if (currentSpectrum.length !== peaks.length || currentSpectrum.length !== peakHolds.length) {
peaks.length = currentSpectrum.length;
peakHolds.length = currentSpectrum.length;
}
const factor = inAudioContext ? 60/audioCtx.sampleRate : 1,
holdFactor = inAudioContext ? audioCtx.sampleRate/60 : 1,
smoothingTimeConstant = (visualizerSettings.smoothingTimeConstant/100) ** factor,
peakDecayTimeConstant = (visualizerSettings.peakDecay/100) ** factor,
fifoLength = Math.max(Math.round(visualizerSettings.fifoLength / 1000 * (inAudioContext ? audioCtx.sampleRate : 60)), 1); // assuming 60fps
if (!visualizerSettings.freezeFIFO) {
for (let i = 0; i < fifoBuffers.length; i++) {
if (fifoBuffers[i] === undefined)
fifoBuffers[i] = new Array(fifoLength);
else if (fifoBuffers[i].length !== fifoLength)
fifoBuffers[i].length = fifoLength;
}
}
for (let i = 0; i < data.length; i++) {
currentSpectrum[i] = isFinite(currentSpectrum[i]) ? visualizerSettings.useAverageSmoothing ? data[i]*(1-smoothingTimeConstant) + currentSpectrum[i]*smoothingTimeConstant : Math.max(data[i], currentSpectrum[i]*smoothingTimeConstant) : data[i];
const peakValue = visualizerSettings.useActualPeak ? data[i] : currentSpectrum[i];
if (peakValue >= peaks[i] || !isFinite(peaks[i])) {
peaks[i] = peakValue;
peakHolds[i] = visualizerSettings.peakHold * holdFactor;
}
else if (peakHolds[i] > 0)
peakHolds[i] = Math.min(peakHolds[i]-1, visualizerSettings.peakHold * holdFactor);
else
peaks[i] *= peakDecayTimeConstant;
if (!visualizerSettings.pauseAverage) {
// infinite (cumulative) average spectrum part
let dataToAverage = data[i];
switch (visualizerSettings.averagingDomain) {
case 'rms':
dataToAverage = dataToAverage ** 2;
break;
case 'log':
dataToAverage = 20 * Math.log10(dataToAverage);
}
averageSpectrum[i] = (dataToAverage + cumulativeIdx*(isFinite(averageSpectrum[i]) ? averageSpectrum[i] : 0))/(cumulativeIdx+1);
}
if (!visualizerSettings.freezeFIFO)
fifoBuffers[i][fifoIdx] = data[i];
}
if (!visualizerSettings.pauseAverage)
cumulativeIdx++;
if (!visualizerSettings.freezeFIFO)
fifoIdx = idxWrapOver(fifoIdx+1, fifoLength);
}
function updateAccumulatedSpectrum(data) {
accumulatedSpectrum.length = data.length;
for (let i = 0; i < data.length; i++) {
const prevResult = accumulatedSpectrum[i],
x = data[i];
accumulatedSpectrum[i] = Math.max(isFinite(prevResult) ? prevResult : 0, isFinite(x) ? x : 0);
}
}
function calcCalibrationLine(data, domain = 'rms') {
let calibrationValue = 0;
for (let i = 0; i < data.length; i++) {
const x = data[i];
// calculating a calibration line
switch (domain) {
case 'rms':
calibrationValue += x ** 2;
break;
case 'log':
calibrationValue += 20*Math.log10(x);
break;
default:
calibrationValue += x;
}
}
switch (domain) {
case 'rms':
return Math.sqrt(calibrationValue/fifoBuffers.length);
case 'log':
return 10 ** (calibrationValue/fifoBuffers.length/20);
default:
return calibrationValue / fifoBuffers.length;
}
}
function drawGraph(data, isPeak, aux) {
const isLine = visualizerSettings.drawLines,
height = canvas.height / (1+(visualizerSettings.display === 'both')),
prevLineWidth = ctx.lineWidth,
prevLineJoin = ctx.lineJoin,
prevMiterLimit = ctx.miterLimit;
ctx.lineWidth = visualizerSettings.lineWidth;
ctx.lineJoin = visualizerSettings.lineJoin;
ctx.miterLimit = visualizerSettings.miterLimit;
if (isLine) {
ctx.beginPath();
if (!isPeak)
ctx.lineTo(canvas.width / data.length / 2, canvas.height)
}
for (let i = 0; i < data.length; i++) {
const amp = ascale(data[i]);
let x = isLine ? i * canvas.width / data.length + (canvas.width / data.length / 2) : Math[visualizerSettings.spacingMode === 'smooth' ? 'max' : 'trunc'](i * canvas.width / data.length) + Math.min(visualizerSettings.barSpacing, canvas.width / data.length)/2 * visualizerSettings.centerBars,
y,
w = isLine ? canvas.width / data.length - 2 : Math.max(1, (visualizerSettings.spacingMode === 'pixel perfect' ? Math.trunc((i+1) * canvas.width / data.length)-Math.trunc(i * canvas.width / data.length) : Math[visualizerSettings.spacingMode === 'smooth' ? 'max' : 'trunc'](canvas.width / data.length))-visualizerSettings.barSpacing),
h;
if (isPeak || isLine) {
y = height - amp * height;
h = visualizerSettings.peakHeight;
}
else {
y = canvas.height;
h = -amp*height - canvas.height+height;
}
ctx.globalAlpha = Array.isArray(aux) && !isLine ? aux[i] / (visualizerSettings.peakHold * (visualizerSettings.useAccurateSmoothing ? audioCtx.sampleRate/60 : 1)) : isFinite(aux) ? aux : 1;
if (!isLine)
ctx.fillRect(x, y, w, h);
else {
ctx.lineTo(x, y);
}
}
if (isLine) {
if (isPeak)
ctx.stroke();
else {
ctx.lineTo((data.length-0.5)*canvas.width/data.length, canvas.height);
ctx.fill();
}
}
ctx.lineWidth = prevLineWidth,
ctx.lineJoin = prevLineJoin,
ctx.miterLimit = prevMiterLimit;
}
function printSpectrogram(data) {
const length = visualizerSettings.display === 'both' ? auxCanvas.width : auxCanvas.height;
for (let i = 0; i < data.length; i++) {
const start = Math.trunc(i/data.length*length),
end = Math.trunc((i+1)/data.length*length),
delta = end-start,
amp = ascale(data[i]*2, visualizerSettings.decoupleAmplitudeFromSpectrum);
auxCtx.fillStyle = `hsl(0, 0%, ${map(isFinite(amp) ? amp : 0, 0, 1, visualizerSettings.darkMode ? 0 : 100, visualizerSettings.darkMode ? 100 : 0)}%)`;
if (visualizerSettings.display === 'both')
auxCtx.fillRect(start, 0, delta, 1);
else
auxCtx.fillRect(visualizerSettings.display === 'static' ? staticSpectrogramIdx+1 : auxCanvas.width, auxCanvas.height-start, -1, -delta)
}
if (auxCanvas.width > 0 && auxCanvas.height > 0)
auxCtx.drawImage(auxCanvas,
visualizerSettings.display === 'both' || visualizerSettings.display === 'static' ? 0 : -1,
visualizerSettings.display === 'both' ? 1 : 0
);
if (visualizerSettings.display === 'static')
staticSpectrogramIdx = idxWrapOver(staticSpectrogramIdx+1, auxCanvas.width);
else
staticSpectrogramIdx = 0;
}
Also see: Tab Triggers