Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URLs added here will be added as <link>s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Auto Save

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                <div id="container"><canvas id="canvas"></canvas></div>
<audio id="audio" controls crossorigin></audio>
<input id="audioFileInput" type="file" accept="audio/*">
<script id="CustomDSPEffect" type="worklet">
// Similar to Downmix channels to mono DSP effect from foobar2000, but preserves LFE effects
class DownmixToMono extends AudioWorkletProcessor {
  constructor() {
    super();
  }
  
  process(inputs, outputs, parameters) {
    const input = inputs[0],
          output = outputs[0],
          dataArray = [];
    for (let i = 0; i < input[0].length; i++) {
      let sum = 0;
      for (let j = 0; j < input.length; j++) {
        sum += input[j][i];
      }
      dataArray[i] = sum/input.length;
    }
    input.forEach((channel, x) => {
      for (let i = 0; i < channel.length; i++) {
        output[x][i] = dataArray[i];
      }
    });
    return true;
  }
}
registerProcessor('downmix-channels-to-mono', DownmixToMono);

class BassBoost extends AudioWorkletProcessor {
  static get parameterDescriptors() {
    return [{
        name: 'freq',
        defaultValue: 50,
        minValue: 0
      },{
        name: 'gain',
        defaultValue: 12
      }];
  }
  
  constructor() {
    super();
    this.smoothedValues0 = [];
    this.smoothedValues1 = [];
    this.smoothedValues2 = [];
    this.smoothedValues3 = [];
    this.ampTodB = x => {
      return 20*Math.log10(x);
    };
    this.dBToAmp = x => {
      return 10 ** (x/20);
    }
  }
  
  process(inputs, outputs, parameters) {
    const decayTime = Math.E ** (-parameters.freq[0]/sampleRate*8),
          input = inputs[0],
          output = outputs[0];
    this.smoothedValues0.length = input.length;
    this.smoothedValues1.length = input.length;
    this.smoothedValues2.length = input.length;
    this.smoothedValues3.length = input.length;
    input.forEach((channel, x) => {
      for (let i = 0; i < channel.length; i++) {
        const sample = channel[i];
        this.smoothedValues0[x] = isFinite(this.smoothedValues0[x]) ? sample * (1-decayTime) + this.smoothedValues0[x] * decayTime : sample;
        this.smoothedValues1[x] = isFinite(this.smoothedValues1[x]) ? this.smoothedValues0[x] * (1-decayTime) + this.smoothedValues1[x] * decayTime : this.smoothedValues0[x];
        this.smoothedValues2[x] = isFinite(this.smoothedValues2[x]) ? this.smoothedValues1[x] * (1-decayTime) + this.smoothedValues2[x] * decayTime : this.smoothedValues1[x];
        this.smoothedValues3[x] = isFinite(this.smoothedValues3[x]) ? this.smoothedValues2[x] * (1-decayTime) + this.smoothedValues3[x] * decayTime : this.smoothedValues2[x];
        output[x][i] = input[x][i] + this.smoothedValues3[x] * (this.dBToAmp(parameters.gain[0])-1);
      }
    });
    return true;
  }
}
registerProcessor('bass-boost', BassBoost);  

class CustomDSPEffect extends AudioWorkletProcessor {
  static get parameterDescriptors() {
    return [{
      name: 'strength',
      defaultValue: 1
    },
    {
      name: 'decay',
      defaultValue: 1
    }];
  }
  constructor() {
    super();
    this.values = [],
    this.vels = [];
  }
  process(inputs, outputs, parameters) {
    const input = inputs[0],
          output = outputs[0],
          strength = parameters.strength[0]/100,
          decay = parameters.decay[0]/100;
    this.values.length = input.length;
    this.vels.length = this.values.length;
    input.forEach((channel, x) => {
      for (let i = 0; i < channel.length; i++) {
        //this.values[x] = isFinite(this.values[x]) ? this.values[x]+strength*Math.sign(channel[i]-this.values[x]) : channel[i];
        this.vels[x] = isFinite(this.vels[x]) ? this.vels[x]+strength*Math.sign(channel[i]-this.values[x]) : 0;
        this.values[x] = isFinite(this.values[x]) ? (this.values[x]+this.vels[x])*(1-decay) : channel[i];
        output[x][i] = this.values[x];
      }
    });
    return true;
  }
}

registerProcessor('custom-dsp-effect', CustomDSPEffect);
// Technically, we can register multiple processors within a single script in the similar way to how a single foobar2000 DSP component like Utility DSP Array and Effects DSP adds more than one DSP effect
// Simple peak compressor using leaky integrator
class CompressorProcessor extends AudioWorkletProcessor {
  static get parameterDescriptors() {
    return [{
        name: 'threshold',
        defaultValue: -12
      },{
        name: 'threshold2',
        defaultValue: -48
      },{
        name: 'upperLimit',
        defaultValue: 60
      },{
        name: 'lowerLimit',
        defaultValue: 30
      },{
        name: 'ratio',
        defaultValue: 2
      },{
        name: 'ratio2',
        defaultValue: 1
      },{
        name: 'attack',
        defaultValue: 5,
        minValue: 0
      },{
        name: 'release',
        defaultValue: 50,
        minValue: 0
      },{
        name: 'makeupGain',
        defaultValue: 0
      },{
        name: 'mix',
        defaultValue: 100,
        minValue: 0,
        maxValue: 100
      }];
  }
  
  constructor() {
    super();
    this.envelopeValues = [];
    this.ampTodB = x => {
      return 20*Math.log10(x);
    };
    this.dBToAmp = x => {
      return 10 ** (x/20);
    }
  }
  
  process(inputs, outputs, parameters) {
    const input = inputs[0],
          output = outputs[0],
          attTime = Math.E ** (-1/(parameters.attack[0]*sampleRate/1000)),
          relTime = Math.E ** (-1/(parameters.release[0]*sampleRate/1000)),
          slope = 1 - (1/parameters.ratio[0]),
          slope2 = 1 - (1/parameters.ratio2[0]);
    this.envelopeValues.length = input.length;
    input.forEach((channel, x) => {
      for (let i = 0; i < channel.length; i++) {
        const amp = this.ampTodB(Math.abs(channel[i]));
        const gainReduction = 
              (Math.abs(slope) <= 0 ? 0 : Math.max(Math.min((-amp+parameters.threshold[0]), 0), -parameters.upperLimit[0]/Math.abs(slope)))*slope -
              (Math.abs(slope2) <= 0 ? 0 : Math.min(Math.max((amp-parameters.threshold2[0]), -parameters.lowerLimit[0]/Math.abs(slope2)), 0))*slope2;
        const smoothingTimeConstant = gainReduction > this.envelopeValues[x] ? relTime : attTime;
        this.envelopeValues[x] = isFinite(this.envelopeValues[x]) ? gainReduction * (1-smoothingTimeConstant) + this.envelopeValues[x] * (smoothingTimeConstant) : gainReduction;
        
        output[x][i] = input[x][i] * (this.dBToAmp(this.envelopeValues[x]) * parameters.mix[0]/100 + (1-parameters.mix[0]/100)) * this.dBToAmp(parameters.makeupGain[0]);
      }
    });
    return true;
  }
}

registerProcessor('compressor-processor', CompressorProcessor);
  
class LimiterProcessor extends AudioWorkletProcessor {
  static get parameterDescriptors() {
    return [{
        name: 'threshold',
        defaultValue: 0
      },{
        name: 'attack',
        defaultValue: 5,
        minValue: 0
      },{
        name: 'release',
        defaultValue: 50,
        minValue: 0
      },{
        name: 'autoReleaseDiff',
        defaultValue: 2,
        minValue: 0,
      },{
        name: 'autoReleaseAmount',
        defaultValue: 0,
      },{
        name: 'autoReleaseTime',
        defaultValue: 100,
        minValue: 0
      }];
  }
  
  constructor() {
    super();
    this.envelopeValues = [];
    this.fastEnvelopes = [];
    this.slowEnvelopes = [];
    this.ampTodB = x => {
      return 20*Math.log10(x);
    };
    this.dBToAmp = x => {
      return 10 ** (x/20);
    }
  }
  
  process(inputs, outputs, parameters) {
    const input = inputs[0],
          output = outputs[0],
          attTime = Math.E ** (-1/(parameters.attack[0]*sampleRate/1000)),
          relTime = Math.E ** (-1/(parameters.release[0]*sampleRate/1000)),
          // auto-release values
          fastEnvTime = Math.E ** (-1/(parameters.autoReleaseTime[0]*sampleRate/1000)),
          slowEnvTime = Math.E ** (-1/(parameters.autoReleaseTime[0]*parameters.autoReleaseDiff[0]*sampleRate/1000));
    this.envelopeValues.length = input.length;
    this.fastEnvelopes.length = input.length;
    this.slowEnvelopes.length = input.length;
    input.forEach((channel, x) => {
      for (let i = 0; i < channel.length; i++) {
        const linearAmp = Math.abs(input[x][i]);
        this.fastEnvelopes[x] = isFinite(this.fastEnvelopes[x]) ? linearAmp * (1-fastEnvTime) + this.fastEnvelopes[x] * fastEnvTime : linearAmp;
        this.slowEnvelopes[x] = isFinite(this.slowEnvelopes[x]) ? linearAmp * (1-slowEnvTime) + this.slowEnvelopes[x] * slowEnvTime : linearAmp;
        
        const amp = this.ampTodB(Math.abs(channel[i])),
              gainReduction = Math.min(0, -amp+parameters.threshold[0]),
              envRatio = this.fastEnvelopes[x]/this.slowEnvelopes[x],
              reductionSpeedMultiplier = parameters.autoReleaseAmount[0] !== 0 && isFinite(envRatio) ? envRatio ** (parameters.autoReleaseAmount[0]/100) : 1,
              smoothingTimeConstant = (gainReduction > this.envelopeValues[x] ? relTime : attTime) ** reductionSpeedMultiplier;
        this.envelopeValues[x] = isFinite(this.envelopeValues[x]) ? gainReduction * (1-smoothingTimeConstant) + this.envelopeValues[x] * (smoothingTimeConstant) : gainReduction;
        
        output[x][i] = input[x][i] * this.dBToAmp(this.envelopeValues[x]-parameters.threshold[0]); // peaks can go above 0dBFS if attack time is more than zero because we don't apply a lookahead
      }
    });
    return true;
  }
}

registerProcessor('limiter-processor', LimiterProcessor);

class WinampEQLimiter extends AudioWorkletProcessor {
  static get parameterDescriptors() {
    return [{
        name: 'threshold',
        defaultValue: 0
      },{
        name: 'ceiling',
        defaultValue: 0
      },{
        name: 'release',
        defaultValue: 700,
        minValue: 0
      },{
        name: 'channelLink',
        defaultValue: 100,
        minValue: 0,
        maxValue: 100
      }];
  }
  
  constructor() {
    super();
    this.envelopeValues = [];
    this.ampTodB = x => {
      return 20*Math.log10(x);
    };
    this.dBToAmp = x => {
      return 10 ** (x/20);
    }
  }
  
  process(inputs, outputs, parameters) {
    const input = inputs[0],
          output = outputs[0],
          relTime = 0.001 ** (1/(parameters.release[0]*sampleRate/1000));
    this.envelopeValues.length = input.length;
    const globalValue = [];
    input.forEach((channel, x) => {
      for (let i = 0; i < channel.length; i++) {
        globalValue[i] = Math.max(isFinite(globalValue[i]) ? globalValue[i] : 0, Math.abs(channel[i])) * (parameters.channelLink[0] / 100);
      }
    });
    input.forEach((channel, x) => {
      for (let i = 0; i < channel.length; i++) {
        const preamp = this.dBToAmp(-parameters.threshold[0]),
              ceiling = this.dBToAmp(parameters.ceiling[0]),
              amp = Math.max(Math.abs(input[x][i]), isFinite(globalValue[i]) ? globalValue[i] : 0) * preamp / ceiling;
        this.envelopeValues[x] = Math.max(isFinite(this.envelopeValues[x]) ? this.envelopeValues[x] * relTime : isFinite(amp) ? amp : 0, isFinite(amp) ? amp : 0);
        
        output[x][i] = input[x][i] * preamp * Math.min(1/this.envelopeValues[x], 1);
      }
    });
    return true;
  }
}
registerProcessor('waeqlim-dsp', WinampEQLimiter);

</script>
<script>
  function map(x, min, max, targetMin, targetMax) {
    return (x - min) / (max - min) * (targetMax - targetMin) + targetMin;
  }
  
  function clamp(x, min, max) {
    return Math.min(Math.max(x, min), max);
  }
  
  function idxWrapOver(x, length) {
    return (x % length + length) % length;
  }
  // Hz and FFT bin conversion
function hertzToFFTBin(x, y = 'round', bufferSize = 4096, sampleRate = 44100) {
  const bin = x * bufferSize / sampleRate;
  let func = y;
  
  if (!['floor','ceil','trunc'].includes(func))
    func = 'round'; // always use round if you specify an invalid/undefined value
  
  return Math[func](bin);
}

function fftBinToHertz(x, bufferSize = 4096, sampleRate = 44100) {
  return x * sampleRate / bufferSize;
}
  

// Calculate the FFT
function calcFFT(input) {
  let fft = input.map(x => x);
  let fft2 = input.map(x => x);
  transform(fft, fft2);
  let output = new Array(Math.round(fft.length/2)).fill(0);
  for (let i = 0; i < output.length; i++) {
    output[i] = Math.hypot(fft[i], fft2[i])/(fft.length);
  }
  return output;
}

function calcComplexFFT(input) {
  let fft = input.map(x => x);
  let fft2 = input.map(x => x);
  transform(fft, fft2);
  return input.map((_, i, arr) => {
    return {
      re: fft[i]/(arr.length/2),
      im: fft2[i]/(arr.length/2),
      magnitude: Math.hypot(fft[i], fft2[i])/(arr.length/2),
      phase: Math.atan2(fft2[i], fft[i])
    };
  });
}
  
function calcComplexInputFFT(real, imag) {
  if (real.length !== imag.length)
    return [];
  const fft1 = real.map(x => x),
        fft2 = imag.map(x => x);
  transform(fft1, fft2);
  return real.map((_, i, arr) => {
    return {
      re: fft1[i]/arr.length,
      im: fft2[i]/arr.length,
      magnitude: Math.hypot(fft1[i], fft2[i])/arr.length,
      phase: Math.atan2(fft2[i], fft1[i])
    }
  });
}
  
  /**
 * FFT and convolution (JavaScript)
 * 
 * Copyright (c) 2017 Project Nayuki. (MIT License)
 * https://www.nayuki.io/page/free-small-fft-in-multiple-languages
 */

/* 
 * Computes the discrete Fourier transform (DFT) of the given complex vector, storing the result back into the vector.
 * The vector can have any length. This is a wrapper function.
 */
function transform(real, imag) {
	const n = real.length;
	if (n != imag.length)
		throw "Mismatched lengths";
	if (n <= 0)
		return;
	else if ((2 ** Math.trunc(Math.log2(n))) === n)  // Is power of 2
		transformRadix2(real, imag);
	else  // More complicated algorithm for arbitrary sizes
		transformBluestein(real, imag);
}


/* 
 * Computes the inverse discrete Fourier transform (IDFT) of the given complex vector, storing the result back into the vector.
 * The vector can have any length. This is a wrapper function. This transform does not perform scaling, so the inverse is not a true inverse.
 */
function inverseTransform(real, imag) {
	transform(imag, real);
}


/* 
 * Computes the discrete Fourier transform (DFT) of the given complex vector, storing the result back into the vector.
 * The vector's length must be a power of 2. Uses the Cooley-Tukey decimation-in-time radix-2 algorithm.
 */
function transformRadix2(real, imag) {
	// Length variables
	const n = real.length;
	if (n != imag.length)
		throw "Mismatched lengths";
	if (n <= 1)  // Trivial transform
		return;
	const logN = Math.log2(n);
	if ((2 ** Math.trunc(logN)) !== n)
		throw "Length is not a power of 2";
	
	// Trigonometric tables
	let cosTable = new Array(n / 2);
	let sinTable = new Array(n / 2);
	for (let i = 0; i < n / 2; i++) {
		cosTable[i] = Math.cos(2 * Math.PI * i / n);
		sinTable[i] = Math.sin(2 * Math.PI * i / n);
	}
	
	// Bit-reversed addressing permutation
	for (let i = 0; i < n; i++) {
		let j = reverseBits(i, logN);
		if (j > i) {
			let temp = real[i];
			real[i] = real[j];
			real[j] = temp;
			temp = imag[i];
			imag[i] = imag[j];
			imag[j] = temp;
		}
	}
	
	// Cooley-Tukey decimation-in-time radix-2 FFT
	for (let size = 2; size <= n; size *= 2) {
		let halfsize = size / 2;
		let tablestep = n / size;
		for (let i = 0; i < n; i += size) {
			for (let j = i, k = 0; j < i + halfsize; j++, k += tablestep) {
				const l = j + halfsize;
				const tpre =  real[l] * cosTable[k] + imag[l] * sinTable[k];
				const tpim = -real[l] * sinTable[k] + imag[l] * cosTable[k];
				real[l] = real[j] - tpre;
				imag[l] = imag[j] - tpim;
				real[j] += tpre;
				imag[j] += tpim;
			}
		}
	}
	
	// Returns the integer whose value is the reverse of the lowest 'bits' bits of the integer 'x'.
	function reverseBits(x, bits) {
		let y = 0;
		for (let i = 0; i < bits; i++) {
			y = (y << 1) | (x & 1);
			x >>>= 1;
		}
		return y;
	}
}


/* 
 * Computes the discrete Fourier transform (DFT) of the given complex vector, storing the result back into the vector.
 * The vector can have any length. This requires the convolution function, which in turn requires the radix-2 FFT function.
 * Uses Bluestein's chirp z-transform algorithm.
 */
function transformBluestein(real, imag) {
	// Find a power-of-2 convolution length m such that m >= n * 2 + 1
	const n = real.length;
	if (n != imag.length)
		throw "Mismatched lengths";
	const m = 2 ** Math.trunc(Math.log2(n*2)+1);
	
	// Trignometric tables
	let cosTable = new Array(n);
	let sinTable = new Array(n);
	for (let i = 0; i < n; i++) {
		let j = i * i % (n * 2);  // This is more accurate than j = i * i
		cosTable[i] = Math.cos(Math.PI * j / n);
		sinTable[i] = Math.sin(Math.PI * j / n);
	}
	
	// Temporary vectors and preprocessing
	let areal = newArrayOfZeros(m);
	let aimag = newArrayOfZeros(m);
	for (let i = 0; i < n; i++) {
		areal[i] =  real[i] * cosTable[i] + imag[i] * sinTable[i];
		aimag[i] = -real[i] * sinTable[i] + imag[i] * cosTable[i];
	}
	let breal = newArrayOfZeros(m);
	let bimag = newArrayOfZeros(m);
	breal[0] = cosTable[0];
	bimag[0] = sinTable[0];
	for (let i = 1; i < n; i++) {
		breal[i] = breal[m - i] = cosTable[i];
		bimag[i] = bimag[m - i] = sinTable[i];
	}
	
	// Convolution
	let creal = new Array(m);
	let cimag = new Array(m);
	convolveComplex(areal, aimag, breal, bimag, creal, cimag);
	
	// Postprocessing
	for (let i = 0; i < n; i++) {
		real[i] =  creal[i] * cosTable[i] + cimag[i] * sinTable[i];
		imag[i] = -creal[i] * sinTable[i] + cimag[i] * cosTable[i];
	}
}


/* 
 * Computes the circular convolution of the given real vectors. Each vector's length must be the same.
 */
function convolveReal(x, y, out) {
	const n = x.length;
	if (n != y.length || n != out.length)
		throw "Mismatched lengths";
	convolveComplex(x, newArrayOfZeros(n), y, newArrayOfZeros(n), out, newArrayOfZeros(n));
}


/* 
 * Computes the circular convolution of the given complex vectors. Each vector's length must be the same.
 */
function convolveComplex(xreal, ximag, yreal, yimag, outreal, outimag) {
	const n = xreal.length;
	if (n != ximag.length || n != yreal.length || n != yimag.length
			|| n != outreal.length || n != outimag.length)
		throw "Mismatched lengths";
	
	xreal = xreal.slice();
	ximag = ximag.slice();
	yreal = yreal.slice();
	yimag = yimag.slice();
	transform(xreal, ximag);
	transform(yreal, yimag);
	
	for (let i = 0; i < n; i++) {
		const temp = xreal[i] * yreal[i] - ximag[i] * yimag[i];
		ximag[i] = ximag[i] * yreal[i] + xreal[i] * yimag[i];
		xreal[i] = temp;
	}
	inverseTransform(xreal, ximag);
	
	for (let i = 0; i < n; i++) {  // Scaling (because this FFT implementation omits it)
		outreal[i] = xreal[i] / n;
		outimag[i] = ximag[i] / n;
	}
}


function newArrayOfZeros(n) {
	let result = new Array(n).fill(0);
	return result;
}
</script>
              
            
!

CSS

              
                body {
  margin: 0;
  overflow: hidden;
}

audio {
  display: inline-block;
  width: 100%;
  height: 40px;
}

canvas {
  display: block;
  width: 100%;
}

#container {
  height: calc( 100vh - 40px );
}

#upload {
  display: none;
}
              
            
!

JS

              
                // necessary parts for audio context and audio elements respectively
const audioCtx = new AudioContext();
const audioPlayer = document.getElementById('audio');
const localAudioElement = document.getElementById('audioFileInput');
localAudioElement.addEventListener('change', loadLocalFile);
// canvas is for displaying visuals
const canvas = document.getElementById('canvas'),
      ctx = canvas.getContext('2d'),
      container = document.getElementById('container');
const audioSource = audioCtx.createMediaElementSource(audioPlayer);
const analyser = audioCtx.createAnalyser();
analyser.fftSize = 32768; // maxes out FFT size
const dataArray = new Float32Array(analyser.fftSize);
// variables
const delay = audioCtx.createDelay();
//audioSource.connect(delay);
//delay.connect(audioCtx.destination);
//audioSource.connect(audioCtx.destination);
//audioSource.connect(analyser);
let customDSPEffect;
const customDSPSource = document.getElementById('CustomDSPEffect'),
      dspSourceBlob = new Blob([customDSPSource.innerText], {type: 'application/javascript'}),
      dspSourceUrl = URL.createObjectURL(dspSourceBlob);

const visualizerSettings = {
  fftSize: 1152,
  type: 'waveform',
  freeze: false
},
      placeholderListData = {
        'Option 1': 'one',
        'Option 2': 'two'
      },
      loader = {
        url: '',
        load: function() {
          audioPlayer.src = this.url;
          audioPlayer.play();
        },
        loadLocal: function() {
          localAudioElement.click();
        },
        toggleFullscreen: _ => {
          if (document.fullscreenElement === canvas)
            document.exitFullscreen();
          else
            canvas.requestFullscreen();
        }
      };
// dat.GUI for quick customization
let gui = new dat.GUI();
gui.add(loader, 'url').name('URL');
gui.add(loader, 'load').name('Load');
gui.add(loader, 'loadLocal').name('Load from local device');
let settings = gui.addFolder('Visualization settings');
// FFT size can be non-power of 2 because we use the FFT library that supports non-power of two data length
settings.add(visualizerSettings, 'fftSize', 32, 32768, 1).name('FFT size');
settings.add(visualizerSettings, 'type', {
  'Waveform': 'waveform',
  'Spectrum': 'spectrum'
}).name('Visualization type');
settings.add(visualizerSettings, 'freeze').name('Freeze analyzer');
// The additional parameters goes here
// another parameters at the end
//gui.add(loader, 'toggleFullscreen').name('Toggle fullscreen mode');

function resizeCanvas() {
  const scale = devicePixelRatio,
        isFullscreen = document.fullscreenElement === canvas;
  canvas.width = (isFullscreen ? innerWidth : container.clientWidth)*scale;
  canvas.height = (isFullscreen ? innerHeight : container.clientHeight)*scale;
}

addEventListener('click', () => {
  if (audioCtx.state == 'suspended')
    audioCtx.resume();
});
addEventListener('resize', resizeCanvas);
resizeCanvas();

function loadLocalFile(event) {
  const file = event.target.files[0],
        reader = new FileReader();
  reader.onload = (e) => {
    audioPlayer.src = e.target.result;
    audioPlayer.play();
  };

  reader.readAsDataURL(file);
}

//visualize();
audioCtx.audioWorklet.addModule(dspSourceUrl).then(() => {
  //let messageCounter = 0;
  // yeah, this below is an example of multiple different DSPs within a single module
  //customDSPEffect = new AudioWorkletNode(audioCtx, 'limiter-processor');
  customDSPEffect = new AudioWorkletNode(audioCtx, 'waeqlim-dsp');
  const bassBoost = new AudioWorkletNode(audioCtx, 'bass-boost');
        //downmixed = new AudioWorkletNode(audioCtx, 'downmix-channels-to-mono');
  //audioSource.connect(downmixed);
  //downmixed.connect(bassBoost);
  audioSource.connect(bassBoost);
  bassBoost.connect(customDSPEffect);
  customDSPEffect.onprocessorerror = (e) => {
    console.log(e.message);
  }
  customDSPEffect.connect(delay);
  customDSPEffect.connect(analyser);
  delay.connect(audioCtx.destination);
  const dspFolder = gui.addFolder('AudioParams');
  dspFolder.add(bassBoost.parameters.get('freq'), 'value', 0, 96000).name('Bass boost frequency');
  dspFolder.add(bassBoost.parameters.get('gain'), 'value', -48, 48).name('Bass boost amount');
  // Winamp EQ's limiter
  dspFolder.add(customDSPEffect.parameters.get('threshold'), 'value', -60, 0).name('Threshold');
  dspFolder.add(customDSPEffect.parameters.get('ceiling'), 'value', -60, 0).name('Ceiling');
  dspFolder.add(customDSPEffect.parameters.get('release'), 'value', 0, 1000).name(`Release`);
  dspFolder.add(customDSPEffect.parameters.get('channelLink'), 'value', 0, 100).name('Channel linking');
  // my own peak limiter
  /*
  dspFolder.add(customDSPEffect.parameters.get('threshold'), 'value', -60, 0).name('Threshold');
  dspFolder.add(customDSPEffect.parameters.get('attack'), 'value', 0, 1000).name(`Attack`);
  dspFolder.add(customDSPEffect.parameters.get('release'), 'value', 0, 1000).name(`Release`);
  dspFolder.add(customDSPEffect.parameters.get('autoReleaseDiff'), 'value', 0, 8).name('Auto-release envelope follower difference');
  dspFolder.add(customDSPEffect.parameters.get('autoReleaseAmount'), 'value', -200, 200).name(`Auto-release amount`);
  dspFolder.add(customDSPEffect.parameters.get('autoReleaseTime'), 'value', 0, 1000).name(`Auto-release envelope follower time`);
  */
  /*
  dspFolder.add(customDSPEffect.parameters.get('strength'), 'value', 0, 100).name('Strength');
  dspFolder.add(customDSPEffect.parameters.get('decay'), 'value', 0, 100).name('Decay');
  */
  /*
  dspFolder.add(customDSPEffect.parameters.get('threshold'), 'value', -60, 0).name(`Upper threshold`);
  dspFolder.add(customDSPEffect.parameters.get('ratio'), 'value', 0.1, 10).name(`Upper ratio`);
  dspFolder.add(customDSPEffect.parameters.get('threshold2'), 'value', -60, 0).name(`Lower threshold`);
  dspFolder.add(customDSPEffect.parameters.get('ratio2'), 'value', 0.1, 10).name(`Lower ratio`);
  dspFolder.add(customDSPEffect.parameters.get('upperLimit'), 'value', 0, 60).name(`Upper limit`);
  dspFolder.add(customDSPEffect.parameters.get('lowerLimit'), 'value', 0, 60).name(`Lower limit`);
  dspFolder.add(customDSPEffect.parameters.get('attack'), 'value', 0, 1000).name(`Attack`);
  dspFolder.add(customDSPEffect.parameters.get('release'), 'value', 0, 1000).name(`Release`);
  dspFolder.add(customDSPEffect.parameters.get('makeupGain'), 'value', -48, 48).name(`Make-up gain`);
  dspFolder.add(customDSPEffect.parameters.get('mix'), 'value', 0, 100).name(`Dry/wet mix`);
  */
  visualize();
}).catch((e) => {
  console.log(e.message);
});

function visualize() {
  delay.delayTime.value = 0;
  if (!visualizerSettings.freeze) {
    // we use getFloatTimeDomainData (which is PCM data that is gathered, just like vis_stream::get_chunk_absolute() in foobar2000 SDK)
    analyser.getFloatTimeDomainData(dataArray);
  }
  const fftData = [];
  for (let i = 0; i < visualizerSettings.fftSize; i++) {
    const x = map(i, 0, visualizerSettings.fftSize-1, -1, 1),
          w = Math.cos(x*Math.PI/2) ** 2 * 2; // Hann window, to be consistent with ChannelGetData function from BASS audio library, especially the FFT part
    fftData[i] = dataArray[i+analyser.fftSize-visualizerSettings.fftSize] * (visualizerSettings.type === 'spectrum' ? w : 1);
  }
  ctx.clearRect(0, 0, canvas.width, canvas.height);
  if (visualizerSettings.type === 'spectrum') {
    const spectrumData = calcFFT(fftData),
          minFreq = 20 * fftData.length / audioCtx.sampleRate,
          maxFreq = 20000 * fftData.length / audioCtx.sampleRate;
    ctx.beginPath();
    for (let i = 0; i < spectrumData.length; i++) {
      ctx.lineTo(map(Math.log2(i), Math.log2(minFreq), Math.log2(maxFreq), 0, canvas.width), map(Math.log10(spectrumData[i]), -4, 0, canvas.height, 0));
    }
    ctx.stroke();
  }
  else {
    ctx.beginPath();
    fftData.map((x, i, arr) => {
      ctx.lineTo(map(i, 0, arr.length-1, 0.5, canvas.width-0.5), map(x, -1, 1, canvas.height, 0));
    });
    ctx.stroke();
  }
  requestAnimationFrame(visualize);
}
// and here's the additional functions that we can need for this visualization
              
            
!
999px

Console