HTML preprocessors can make writing HTML more powerful or convenient. For instance, Markdown is designed to be easier to write and read for text documents and you could write a loop in Pug.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. So you don't have access to higher-up elements like the <html>
tag. If you want to add classes there that can affect the whole document, this is the place to do it.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. If you need things in the <head>
of the document, put that code here.
The resource you are linking to is using the 'http' protocol, which may not work when the browser is using https.
CSS preprocessors help make authoring CSS easier. All of them offer things like variables and mixins to provide convenient abstractions.
It's a common practice to apply CSS to a page that styles elements such that they are consistent across all browsers. We offer two of the most popular choices: normalize.css and a reset. Or, choose Neither and nothing will be applied.
To get the best cross-browser support, it is a common practice to apply vendor prefixes to CSS properties and values that require them to work. For instance -webkit-
or -moz-
.
We offer two popular choices: Autoprefixer (which processes your CSS server-side) and -prefix-free (which applies prefixes via a script, client-side).
Any URLs added here will be added as <link>
s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.
You can apply CSS to your Pen from any stylesheet on the web. Just put a URL to it here and we'll apply it, in the order you have them, before the CSS in the Pen itself.
You can also link to another Pen here (use the .css
URL Extension) and we'll pull the CSS from that Pen and include it. If it's using a matching preprocessor, use the appropriate URL Extension and we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
JavaScript preprocessors can help make authoring JavaScript easier and more convenient.
Babel includes JSX processing.
Any URL's added here will be added as <script>
s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.
You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.
If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
Search for and use JavaScript packages from npm here. By selecting a package, an import
statement will be added to the top of the JavaScript editor for this package.
Using packages here is powered by Skypack, which makes packages from npm not only available on a CDN, but prepares them for native JavaScript ES6 import
usage.
All packages are different, so refer to their docs for how they work.
If you're using React / ReactDOM, make sure to turn on Babel for the JSX processing.
If active, Pens will autosave every 30 seconds after being saved once.
If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.
If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.
Visit your global Editor Settings.
<head>
<script src="https://s3-us-west-2.amazonaws.com/s.cdpn.io/2096725/audio_classification.js"></script>
<script src="https://s3-us-west-2.amazonaws.com/s.cdpn.io/2096725/onset.js"></script>
<script src="https://s3-us-west-2.amazonaws.com/s.cdpn.io/2096725/nt-utils.js"></script>
</head>
<body>
<div id='info'>
<h2>Neural Beatbox (alpha)</h2>
<h5>Make some noise and record your voice! <br>
Deep Learning models will analyze and build a drum kit, then start generating drum patterns infinitely with your sound.</h5>
<p id="warning"> Chrome only</p>
</div>
<!-- RECORDING -->
<div id="initialization">
<div class="progress">
<div class="indeterminate"></div>
</div>
Loading...
</div>
<button id="record_button" disabled>1. Record</button> or Drag&Drop a sound file↓
<div class="progress" id="progressbar-record" style="width:0%"></div>
<div id="ws-waveform"><div id="ws-waveform-text"></div></div>
<div id="ws-spectorogram"></div>
<!-- CLASSIFICATION -->
<button id="classify_button" disabled>2. Analyze</button>
<div class="progress" id="progressbar-analysis" style="display:none">
<div class="indeterminate"></div>
</div>
<div class="grid-container">
<div class="grid-item" id="ws-waveform-kit-0">Kick </div>
<div class="grid-item" id="ws-waveform-kit-1">Snare</div>
<div class="grid-item" id="ws-waveform-kit-2">Hi-hat closed</div>
<div class="grid-item" id="ws-waveform-kit-3">Hi-hat open</div>
<div class="grid-item" id="ws-waveform-kit-4">Tom low</div>
<div class="grid-item" id="ws-waveform-kit-5">Tom mid</div>
<div class="grid-item" id="ws-waveform-kit-6">Tom high</div>
<div class="grid-item" id="ws-waveform-kit-7">Clap</div>
<div class="grid-item" id="ws-waveform-kit-8">Rim</div>
</div>
<p>
<button id="play_button" disabled>3. Play!!</button>
<div id='info'>
<h3>How does it work?</h3>
Convolutional Neural Network is used to analyze and classify audio segments based on spectrograms <a href="https://codepen.io/naotokui/pen/rrGGNJ" target="_">(demo codepen)</a> and Recurrent Neural Network(LSTM) for generating drum sequences.<p>
Shout-out to Tero Parviainen! Rhythm generation part of this codepen is based on his amazing <a href=" https://codepen.io/teropa/pen/JLjXGK">Neural Drum Machine</a>
<p>Built with magenta.js, tensorflow.js and p5.js by <a href="https://twitter.com/naotokui_en/" target="_">@naotokui_en</a><br>
</div>
<div id='info'>
2018.8.30 -added: drag&drop support<br>
2018.8.30 -updated: model re-trained with data augmentation<br>
2018.8.17 -fixed: audio routing. now properly using envelopes!!<br>
2018.8.17 -fixed: duplication in drum kit. one audio segment is used only once in a drum kit<br>
2018.8.9 -added normalization process before the classification.<br>
2018.8.6 -initial release.
</div>
</body>
#info{
background: #555;
margin: 10px;
padding: 20px;
width: 90%;
}
#warning {
color: #f55;
}
#ws-waveform {
background: black;
width: 90%;
justify-content: center;
margin: 10px;
border: 2px solid white;
}
#ws-spectorogram {
background: black;
width: 90%;
justify-content: center;
margin: 10px;
border: 2px solid white;
}
#record_button, #classify_button, #play_button {
font-size: 40;
color: black;
margin: 5px;
}
.progress{
max-width: 90%;
margin: 5px;
}
#top-label {
font-size: 20;
font-family: Helvetica-Neue, sans-serif;
}
.grid-container {
display: inline-grid;
grid-template-columns: auto auto auto;
background-color: white;
padding: 2px;
margin: 10px;
width: 90%;
}
.grid-item {
border: 2px solid rgba(255, 255, 255, 0.8);
padding: 10px;
text-align: center;
background: black;
justify-content: center;
border: 0px solid white;
}
html,
body {
margin: 0;
padding: 0;
width: 100%;
height: 80%;
background-color: #333;
color: white;
}
#initialization {
margin: 10px;
valign: center;
}
// keras-based model to classify drum kit sound based on its spectrogram.
// python script: https://gist.github.com/naotokui/a2b331dd206b13a70800e862cfe7da3c
const modelpath = "https://s3-ap-northeast-1.amazonaws.com/codepen-dev/models/drum_classification_128_augmented/model.json";
// Drum kit
const DRUM_CLASSES = [
'Kick',
'Snare',
'Hi-hat closed',
'Hi-hat open',
'Tom low',
'Tom mid',
'Tom high',
'Clap',
'Rim'
];
const SEGMENT_MIN_LENGTH = 250; // Minimum length of an audio segment
const MAX_REC_DURATION = 10.0; // total recording length in seconds
// Load tensorflow.js model from the path
var isModelLoaded = false;
var isRNNModelLaded = false;
async function loadPretrainedModel() {
tfmodel = await tf.loadModel(modelpath);
isModelLoaded = true;
}
loadPretrainedModel();
// Global
var isReadyToRecord = false;
var isRecording = false;
var isReadyToPlay = false;
var onsets; // segmented regions of recorded audio
var segments = [];
var drumkit_regions = [];
var wavesurfer = WaveSurfer.create({
container: '#ws-waveform',
waveColor: 'white',
progressColor: 'white',
barWidth: '2',
scrollParent: true,
plugins: [
WaveSurfer.spectrogram.create({
container: '#ws-spectorogram',
pixelRatio: 2.0,
}),
WaveSurfer.regions.create()
]
});
wavesurfer.on('region-click', function(region, e) {
e.stopPropagation();
region.play();
});
waveforms_kit = [];
for (let i=0; i<DRUM_CLASSES.length; i++){
let ws = WaveSurfer.create({
container: '#ws-waveform-kit-'+i.toString(),
waveColor: 'white',
progressColor: 'white',
barWidth: '1',
plugins: [
WaveSurfer.regions.create()
]
});
waveforms_kit.push(ws);
ws.on('region-click', function(region, e) {
e.stopPropagation();
region.play();
});
}
function setup() {
// GUIs
select('#record_button').mouseClicked(toggleRecording).size(100,50).attribute('disabled','disabled');
select('#classify_button').mouseClicked(classifyAll).size(100,50).attribute('disabled','disabled');
select('#play_button').size(100,50).attribute('disabled', 'disabled');
select('#ws-waveform').drop(onFileDropped); // enable drag and drop of audio files
select('#ws-waveform').dragOver(onDragOver);
select('#ws-waveform').dragLeave(onDragLeave);
// create an audio in and prompt user to allow mic input
mic = new p5.AudioIn();
mic.start();
// create a sound recorder and set input
recorder = new p5.SoundRecorder();
recorder.setInput(mic);
// compressor - for better audio recording
compressor = new p5.Compressor();
compressor.drywet(1.0);
compressor.threshold(-30);
// this sound file will be used to playback & save the recording
soundFile = new p5.SoundFile();
soundFile.disconnect();
// soundFile = loadSound("https://dl.dropbox.com/s/00ykku8vjgimnfb/TR-08_KIT_A.wav?raw=1", onLoaded);
}
// Reset the seed and start generating rhythms!
function startPlaying(){
// reset the seeds
}
// Analyze button pressed -> classify all audio segments to build a drum kit
async function classifyAll(){
if (isModelLoaded === false){
alert("Error: TensorFlow.js model is not loaded. Check your network connection.");
return;
}
if (!soundFile || soundFile.duration() == 0){
alert("You need to record something before analyzing.");
return;
}
// GUI
select("#progressbar-analysis").show();
await sleep(100); // dirty hack to reflect the UI change. TODO: fix me!
// Classification
var predictions = await doesClassifyAll();
// Create drumkit based on the predictions
var drumkits = await createDrumSet(predictions);
// finished!
select("#progressbar-analysis").hide();
isReadyToPlay = true;
}
async function createDrumSet(predictions, allowDuplication = false){
var drumkits = []; // array of segment ids
if (allowDuplication){
// create a drum set while allowing duplication = a segment can be used multiple times in a drum kit
for (let drum in DRUM_CLASSES){
let pred_drums = [];
for (let i = 0; i < predictions.length; i++){
pred_drums.push(predictions[i][drum]);
}
let selected_id = _.indexOf(pred_drums, _.max(pred_drums));
drumkits.push(selected_id);
}
}else{
// Create a drum set while avoiding duplication = a segment only used once in a drum kit
for (let drum in DRUM_CLASSES){
let pred_drums = [];
for (let i = 0; i < predictions.length; i++){
pred_drums.push(predictions[i][drum]);
}
let pred_drums_sorted = pred_drums.slice(); // copy
pred_drums_sorted.sort(function(a, b){return b - a});
for (let i =0; i < pred_drums_sorted.length; i++){
let selected_id = _.indexOf(pred_drums, pred_drums_sorted[i]);
// check if the segment is not selected yet.
if (!drumkits.includes(selected_id)){
drumkits.push(selected_id);
break;
}
}
}
}
// Create audiobuffers
// FIXME: codepen doesn't like long lasting loops???
drumkit_regions = [];
createDrumKitBuffer(soundFile.buffer, drumkits, 0);
createDrumKitBuffer(soundFile.buffer, drumkits, 1);
createDrumKitBuffer(soundFile.buffer, drumkits, 2);
createDrumKitBuffer(soundFile.buffer, drumkits, 3);
createDrumKitBuffer(soundFile.buffer, drumkits, 4);
createDrumKitBuffer(soundFile.buffer, drumkits, 5);
createDrumKitBuffer(soundFile.buffer, drumkits, 6);
createDrumKitBuffer(soundFile.buffer, drumkits, 7);
createDrumKitBuffer(soundFile.buffer, drumkits, 8);
return drumkits;
}
function createDrumKitBuffer(buffer, drumkits, i){
if (i >= drumkits.length) return;
print(DRUM_CLASSES[i], drumkits[i]);
var index = drumkits[i];
var startIndex = buffer.sampleRate * onsets[index];
var endIndex = buffer.sampleRate * onsets[index + 1];
var tmpArray = buffer.getChannelData(0);
tmpArray = tmpArray.slice(startIndex, endIndex);
drumKit[i].buffer.fromArray(tmpArray);
// show waveform
let audiobuffer = drumKit[i].buffer.get();
waveforms_kit[i].loadDecodedBuffer(audiobuffer);
let drumkit_region = waveforms_kit[i].addRegion({ // react to click event
id: 0,
start: 0,
end: onsets[index+1] - onsets[index],
resize: false,
drag: false
});
drumkit_regions[i] = drumkit_region;
}
function doesClassifyAll(){
var predictions = []
for (var i = 0; i < onsets.length-1; i++) {
// Classify the segment
let prediction = classifyAudioSegment(soundFile.buffer, onsets[i], onsets[i+1]);
predictions.push(prediction);
}
return predictions;
}
// Normalize audio buffer to -1 to 1 range
function normalizeBuffer (buffer) {
var max = 0
for (var c = 0; c < buffer.numberOfChannels; c++) {
var data = buffer.getChannelData(c)
for (var i = 0; i < buffer.length; i++) {
max = Math.max(Math.abs(data[i]), max)
}
}
var amp = Math.max(1 / max, 1)
for (var c = 0; c < buffer.numberOfChannels; c++) {
var data = buffer.getChannelData(c);
for (var i = 0; i < buffer.length; i++) {
data[i] = Math.min(Math.max(data[i] * amp, -1), 1);
}
}
}
function onLoaded(){
compressor.process(soundFile);
processBuffer(soundFile.buffer);
select('#initialization').hide();
}
function onSoundLoading(progress){
}
function onFileDropped(file){
// If it's an audio file
if (file.type === 'audio') {
if (file.size > 3000000){ // 3MB
alert("Oops... this a file is too big!");
return;
}
select('#initialization').show();
soundFile = loadSound(file.data, onLoaded, onSoundLoading);
} else {
alert("Wrong format!");
}
select("#ws-waveform").style('border-color', 'white');
}
function onDragOver() {
select("#ws-waveform").style('border-color', 'green');
}
function onDragLeave() {
select("#ws-waveform").style('border-color', 'white');
}
function onRecStop(){
var waveform = select("#ws-waveform");
waveform.style('border-color', 'white');
compressor.process(soundFile);
normalizeBuffer(soundFile.buffer);
processBuffer(soundFile.buffer);
select("#ws-waveform-text").html('');
isRecording = false;
}
function toggleRecording(){
if (mic.enabled === false) return;
if (!isRecording){
recorder.record(soundFile, MAX_REC_DURATION, onRecStop);
select("#ws-waveform-text").html('Recording...');
var waveform = select("#ws-waveform");
waveform.style('border-color', 'red');
isRecording = true;
recStartedAt = millis();
}
}
function draw(){
// react to mic input volume
if (mic.enabled && soundFile.duration() == 0){
var level = mic.getLevel();
select("#ws-waveform").style('background:rgb('+int(level* 255)+',0,0)');
}
if (isRecording){
let elapsed = (millis() - recStartedAt)/1000.0;
let percentage = int(elapsed / MAX_REC_DURATION * 100);
select("#progressbar-record").style('width:'+percentage+'%');
}
if (!isReadyToRecord){
if (isModelLoaded && isRNNModelLaded){
select('#record_button').removeAttribute('disabled');
select('#classify_button').removeAttribute('disabled');
select('#play_button').removeAttribute('disabled');
select('#initialization').hide();
isReadyToRecord = true;
}
}
}
function processBuffer(buffer){
// Onsets
// see https://s3-us-west-2.amazonaws.com/s.cdpn.io/2096725/onset.js
onsets = getOnsets(buffer, SEGMENT_MIN_LENGTH);
// trim at the first onset
if (onsets.length > 0){
console.log("trim at", onsets[0]);
buffer = sliceAudioBufferInMono(buffer, onsets[0], buffer.duration);
onsets = getOnsets(buffer);
}
// Show waveform
wavesurfer.loadDecodedBuffer(buffer);
// set region
wavesurfer.clearRegions(); // clear previou data
segments = [];
for (var i = 0; i < onsets.length-1; i++) {
region = wavesurfer.addRegion({
id: i,
start: onsets[i],
end: onsets[i+1],
resize: false,
drag: false,
color: randomColor(0.15)
});
segments.push(region);
}
}
function checkVolume(buffer){
const AMP_THRESHOLD = 0.1; // does this segment have any sound?
var array = buffer.getChannelData(0);
for (let i=0; i<array.length; i++){
if (array[i] > AMP_THRESHOLD) return true;
}
return false;
}
function classifyAudioSegment(buffer, startSec, endSec, fftSize=1024, hopSize=256, melCount=128, specLength=32){
// Create audio buffer for the segment
buffer = sliceAudioBufferInMono(buffer, startSec, endSec);
// if its too quiet... ignore!
if (checkVolume(buffer) === false){
return _.fill(Array(DRUM_CLASSES.length), 0.0);
}
// Get spectrogram matrix
let db_spectrogram = createSpectrogram(buffer, fftSize, hopSize, melCount, false);
// Create tf.tensor2d
// This audio classification model expects spectrograms of [128, 32] (# of melbanks: 128 / duration: 32 FFT windows)
const tfbuffer = tf.buffer([melCount, specLength]);
// Initialize the tfbuffer. TODO: better initialization??
for (var i = 0; i < melCount ; i++) {
for (var j = 0; j < specLength; j++) {
tfbuffer.set(MIN_DB, i, j);
}
}
// Fill the tfbuffer with spectrogram data in dB
let lng = (db_spectrogram.length < specLength)? db_spectrogram.length : specLength; // just in case the buffer is shorter than the specified size
for (var i = 0; i < melCount ; i++) {
for (var j = 0; j < lng; j++) {
tfbuffer.set(db_spectrogram[j][i], i, j); // cantion: needs to transpose the matrix
}
}
// Reshape for prediction
input_tensor = tfbuffer.toTensor(); // tf.buffer -> tf.tensor
input_tensor = tf.reshape(input_tensor, [1, input_tensor.shape[0], input_tensor.shape[1], 1]); // [1, 128, 32, 1]
// TO DO: fix this loading process
try {
let predictions = tfmodel.predict(input_tensor);
predictions = predictions.flatten().dataSync(); // tf.tensor -> array
let predictions_ = [] // we only care the selected set of drums
for (var i =0; i < DRUM_CLASSES.length; i++){
predictions_.push(predictions[i]);
}
return predictions_;
} catch( err ) {
console.error( err );
return _.fill(Array(DRUM_CLASSES.length), 0.0);
}
}
/* UTILITY */
function sleep(ms) {
return new Promise(resolve => setTimeout(resolve, ms));
}
//////////////////////////////////////////////////////////////////
// The following part is taken from Tero Parviainen's amazing
// Neural Drum Machine
// https://codepen.io/teropa/pen/JLjXGK
// I made a few modifications:
// - added ADSR envelope to each drum sound
// - make the sequence keep contineuously changing
const TIME_HUMANIZATION = 0.01;
// Add small reverb
let dummySoundPath = 'https://s3-us-west-2.amazonaws.com/s.cdpn.io/2096725/silent.wav';
let masterComp = new Tone.Compressor().toMaster();
let envelopes = [];
for (let i=0; i < DRUM_CLASSES.length; i++){
var env = new Tone.AmplitudeEnvelope({
"attack" : 0.05,
"decay" : 0.30,
"sustain" : 1.0,
"release" : 0.30,
});
env.connect(masterComp);
envelopes.push(env);
}
// let gains = [];
// for (let i=0; i < DRUM_CLASSES.length; i++){
// var gain = new Tone.Gain();
// envelopes[i].connect(gain.gain);
// gain.gain = 0.0;
// gain.connect(masterComp);
// gains.push(gain);
// }
// initialize Tone.Players with silent wav file
let drumKit = [];
for (let i=0; i < DRUM_CLASSES.length; i++){
var drum = new Tone.Player(dummySoundPath);
drum.connect(envelopes[i]);
drumKit.push(drum);
}
let midiDrums = [36, 38, 42, 46, 41, 43, 45, 49, 51];
let reverseMidiMapping = new Map([ // midi value to drumkit index
[36, 0],
[35, 0],
[38, 1],
[27, 1],
[28, 1],
[31, 1],
[32, 1],
[33, 1],
[34, 1],
[37, 1],
[39, 1],
[40, 1],
[56, 1],
[65, 1],
[66, 1],
[75, 1],
[85, 1],
[42, 2],
[44, 2],
[54, 2],
[68, 2],
[69, 2],
[70, 2],
[71, 2],
[73, 2],
[78, 2],
[80, 2],
[46, 3],
[67, 3],
[72, 3],
[74, 3],
[79, 3],
[81, 3],
[45, 4],
[29, 4],
[41, 4],
[61, 4],
[64, 4],
[84, 4],
[48, 5],
[47, 5],
[60, 5],
[63, 5],
[77, 5],
[86, 5],
[87, 5],
[50, 6],
[30, 6],
[43, 6],
[62, 6],
[76, 6],
[83, 6],
[49, 7],
[55, 7],
[57, 7],
[58, 7],
[51, 8],
[52, 8],
[53, 8],
[59, 8],
[82, 8]
]);
let temperature = 1.0;
let outputs = {
internal: {
play: (drumIdx, velocity, time) => {
drumKit[drumIdx].start(time);
envelopes[drumIdx].triggerAttackRelease (0.5, time, velocity);
if (drumIdx < segments.length){
segments[drumIdx].update({color:randomColor(0.25)});
drumkit_regions[drumIdx].update({color:randomColor(0.25)});
}
}
}
};
let rnn = new mm.MusicRNN(
'https://storage.googleapis.com/download.magenta.tensorflow.org/tfjs_checkpoints/music_rnn/drum_kit_rnn'
);
Promise.all([
rnn.initialize(),
new Promise(res => Tone.Buffer.on('load', res))
]).then(([vars]) => {
isRNNModelLaded = true; // set flag
let state = {
patternLength: 32,
seedLength: 4,
swing: 0.55,
pattern: [[0], [], [2], []].concat(_.times(28, i => [])),
tempo: 120
};
let stepEls = [],
hasBeenStarted = false,
activeOutput = 'internal';
// GUI
select('#play_button').mouseClicked(startPlaying);
function isPlaying(){
return (Tone.Transport.state === 'started');
}
// Sequence Object to keep the rhythm track
sequence = new Tone.Sequence(
(time, { drums, stepIdx }) => {
let isSwung = stepIdx % 2 !== 0;
if (isSwung) {
time += (state.swing - 0.5) * Tone.Time('8n').toSeconds();
}
let velocity = getStepVelocity(stepIdx);
drums.forEach(d => {
let humanizedTime = stepIdx === 0 ? time : humanizeTime(time);
outputs[activeOutput].play(d, velocity, humanizedTime);
visualizePlay(humanizedTime, stepIdx, d);
});
},
// need to initialize with empty array with the length I wanted to have
state.pattern.map((drums, stepIdx) => ({ drums, stepIdx})),
'16n'
);
const original_seed = [[0], [], [2], []];
let making_complex = true; // are we adding more seed notes?
let pattern_seed = original_seed; // original seed
pattern_seed.count = function(){
let count = 0;
for (let i =0; i< pattern_seed.length; i++){
count += pattern_seed[i].length
}
return count;
}
function startPlaying(){
if (isReadyToPlay === false){
alert("Your drum kit is not ready! Record and analyze your voice!");
return;
}
// Start playing
if (!isPlaying()){
// Reset the seeds
pattern_seed = original_seed;
// Regenerate
regenerate(pattern_seed).then(() => {
updatePattern();
// PLay!
playPattern();
select('#play_button').html("3. Pause");
});
} else { // stop playing
Tone.Transport.pause();
select('#play_button').html("3. Play!!");
}
}
// Generate next pattern
Tone.Transport.scheduleRepeat(function(time){
if (isPlaying()) {
let index = Math.floor(Math.random() * pattern_seed.length);
if (making_complex){ // first make the seed more complex
let drumId = Math.floor(Math.random() * DRUM_CLASSES.length);
if (!pattern_seed[index].includes(drumId)) pattern_seed[index].push(drumId);
if (pattern_seed.count() > 6) making_complex = false;
} else { // then less complex.... then loop!
pattern_seed[index].sort().pop();
if (pattern_seed.count() <= 3) making_complex = true;
}
regenerate(pattern_seed);
}
}, "4:0:0", "3:3:0");
// Update the pattern at the very end of 2 bar loop
Tone.Transport.scheduleRepeat(function(time){
if (isPlaying()) {
updatePattern();
}
}, "4:0:0", "3:3:3");
function generatePattern(seed, length) {
let seedSeq = toNoteSequence(seed);
return rnn
.continueSequence(seedSeq, length, temperature)
.then(r => seed.concat(fromNoteSequence(r, length)));
}
function getStepVelocity(step) {
if (step % 4 === 0) {
return 1.0;
} else if (step % 2 === 0) {
return 0.85;
} else {
return 0.70;
}
}
function humanizeTime(time) {
return time - TIME_HUMANIZATION / 2 + Math.random() * TIME_HUMANIZATION;
}
function playPattern() {
if (sequence) sequence.dispose();
sequence = new Tone.Sequence(
(time, { drums, stepIdx }) => {
let isSwung = stepIdx % 2 !== 0;
if (isSwung) {
time += (state.swing - 0.5) * Tone.Time('8n').toSeconds();
}
let velocity = getStepVelocity(stepIdx);
drums.forEach(d => {
let humanizedTime = stepIdx === 0 ? time : humanizeTime(time);
outputs[activeOutput].play(d, velocity, humanizedTime);
// visualizePlay(humanizedTime, stepIdx, d);
});
},
state.pattern.map((drums, stepIdx) => ({ drums, stepIdx })),
'16n'
);
Tone.context.resume();
Tone.Transport.start();
sequence.start();
}
function visualizePlay(time, stepIdx, drumIdx) {
// Tone.Draw.schedule(() => {
// if (drumIdx < segments.length){
// segments[drumIdx].update({color:randomColor(0.25)});
// }
// }, time);
}
function renderPattern(regenerating = false) {
// let seqEl = document.querySelector('.sequencer .steps');
// while (stepEls.length > state.pattern.length) {
// let { stepEl, gutterEl } = stepEls.pop();
// stepEl.remove();
// if (gutterEl) gutterEl.remove();
// }
// for (let stepIdx = 0; stepIdx < state.pattern.length; stepIdx++) {
// let step = state.pattern[stepIdx];
// let stepEl, gutterEl, cellEls;
// if (stepEls[stepIdx]) {
// stepEl = stepEls[stepIdx].stepEl;
// gutterEl = stepEls[stepIdx].gutterEl;
// cellEls = stepEls[stepIdx].cellEls;
// } else {
// stepEl = document.createElement('div');
// stepEl.classList.add('step');
// stepEl.dataset.stepIdx = stepIdx;
// seqEl.appendChild(stepEl);
// cellEls = [];
// }
// stepEl.style.flex = stepIdx % 2 === 0 ? state.swing : 1 - state.swing;
// if (!gutterEl && stepIdx < state.pattern.length - 1) {
// gutterEl = document.createElement('div');
// gutterEl.classList.add('gutter');
// seqEl.insertBefore(gutterEl, stepEl.nextSibling);
// } else if (gutterEl && stepIdx >= state.pattern.length) {
// gutterEl.remove();
// gutterEl = null;
// }
// if (gutterEl && stepIdx === state.seedLength - 1) {
// gutterEl.classList.add('seed-marker');
// } else if (gutterEl) {
// gutterEl.classList.remove('seed-marker');
// }
// for (let cellIdx = 0; cellIdx < DRUM_CLASSES.length; cellIdx++) {
// let cellEl;
// if (cellEls[cellIdx]) {
// cellEl = cellEls[cellIdx];
// } else {
// cellEl = document.createElement('div');
// cellEl.classList.add('cell');
// cellEl.classList.add(_.kebabCase(DRUM_CLASSES[cellIdx]));
// cellEl.dataset.stepIdx = stepIdx;
// cellEl.dataset.cellIdx = cellIdx;
// stepEl.appendChild(cellEl);
// cellEls[cellIdx] = cellEl;
// }
// if (step.indexOf(cellIdx) >= 0) {
// cellEl.classList.add('on');
// } else {
// cellEl.classList.remove('on');
// }
// }
// stepEls[stepIdx] = { stepEl, gutterEl, cellEls };
// let stagger = stepIdx * (300 / (state.patternLength - state.seedLength));
// setTimeout(() => {
// if (stepIdx < state.seedLength) {
// stepEl.classList.add('seed');
// } else {
// stepEl.classList.remove('seed');
// if (regenerating) {
// stepEl.classList.add('regenerating');
// } else {
// stepEl.classList.remove('regenerating');
// }
// }
// }, stagger);
// }
// setTimeout(repositionRegenerateButton, 0);
}
function regenerate(seed) {
renderPattern(true);
return generatePattern(seed, state.patternLength - seed.length).then(
result => {
state.pattern = result;
}
);
}
function updatePattern() {
sequence.removeAll();
state.pattern.forEach(function(drums, stepIdx) {
sequence.at(stepIdx, {stepIdx:stepIdx, drums:drums});
});
renderPattern();
}
function toNoteSequence(pattern) {
return mm.sequences.quantizeNoteSequence(
{
ticksPerQuarter: 220,
totalTime: pattern.length / 2,
timeSignatures: [
{
time: 0,
numerator: 4,
denominator: 4
}
],
tempos: [
{
time: 0,
qpm: 120
}
],
notes: _.flatMap(pattern, (step, index) =>
step.map(d => ({
pitch: midiDrums[d],
startTime: index * 0.5,
endTime: (index + 1) * 0.5
}))
)
},
1
);
}
function fromNoteSequence(seq, patternLength) {
let res = _.times(patternLength, () => []);
for (let { pitch, quantizedStartStep } of seq.notes) {
res[quantizedStartStep].push(reverseMidiMapping.get(pitch));
}
return res;
}
});
Also see: Tab Triggers