HTML preprocessors can make writing HTML more powerful or convenient. For instance, Markdown is designed to be easier to write and read for text documents and you could write a loop in Pug.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. So you don't have access to higher-up elements like the <html>
tag. If you want to add classes there that can affect the whole document, this is the place to do it.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. If you need things in the <head>
of the document, put that code here.
The resource you are linking to is using the 'http' protocol, which may not work when the browser is using https.
CSS preprocessors help make authoring CSS easier. All of them offer things like variables and mixins to provide convenient abstractions.
It's a common practice to apply CSS to a page that styles elements such that they are consistent across all browsers. We offer two of the most popular choices: normalize.css and a reset. Or, choose Neither and nothing will be applied.
To get the best cross-browser support, it is a common practice to apply vendor prefixes to CSS properties and values that require them to work. For instance -webkit-
or -moz-
.
We offer two popular choices: Autoprefixer (which processes your CSS server-side) and -prefix-free (which applies prefixes via a script, client-side).
Any URLs added here will be added as <link>
s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.
You can apply CSS to your Pen from any stylesheet on the web. Just put a URL to it here and we'll apply it, in the order you have them, before the CSS in the Pen itself.
You can also link to another Pen here (use the .css
URL Extension) and we'll pull the CSS from that Pen and include it. If it's using a matching preprocessor, use the appropriate URL Extension and we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
JavaScript preprocessors can help make authoring JavaScript easier and more convenient.
Babel includes JSX processing.
Any URL's added here will be added as <script>
s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.
You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.
If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
Search for and use JavaScript packages from npm here. By selecting a package, an import
statement will be added to the top of the JavaScript editor for this package.
Using packages here is powered by esm.sh, which makes packages from npm not only available on a CDN, but prepares them for native JavaScript ESM usage.
All packages are different, so refer to their docs for how they work.
If you're using React / ReactDOM, make sure to turn on Babel for the JSX processing.
If active, Pens will autosave every 30 seconds after being saved once.
If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.
If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.
Visit your global Editor Settings.
<ul class="flex-container">
<li class="flex-item">
<p>1) Polygone initial</p>
<canvas id="initial2d"></canvas>
</li>
<li class="flex-item">
<p>2) Squelette droit du polygone</p>
<canvas id="canvas_skeleton"></canvas>
</li>
<li class="flex-item">
<p>3) Squelette droit après post-traitement</p>
<canvas id="canvas_post_process"></canvas>
</li>
<li class="flex-item">
<p>4) Calcul de Dmax = <b id="hmax">...</b> </p>
<canvas id="canvas_post_process_vertices"></canvas>
</li>
<li class="flex-item">
<p>5) Triangulation du squelette droit </p>
<canvas id="canvas_triangulated_skeleton"></canvas>
</li>
<li class="flex-item-three-js">
<p>6) Création toiture </p>
<canvas id="scene_roof"> </canvas>
</li>
<li class="flex-item-three-js">
<p>7) Création façade </p>
<canvas id="walls_scene"> </canvas>
</li>
<li class="flex-item-building-three-js">
<p>8) Bâtiment complet </p>
<canvas id="building_scene"> </canvas>
</li>
</ul>
.flex-container {
/* We first create a flex layout context */
display: flex;
/* Then we define the flow direction
and if we allow the items to wrap
* Remember this is the same as:
* flex-direction: row;
* flex-wrap: wrap;
*/
flex-flow: row wrap;
/* Then we define how is distributed the remaining space */
justify-content: space-around;
padding: 0;
margin: 0;
list-style: none;
}
.flex-item {
padding: 5px;
width: 32%;
height: 300px;
margin-top: 10px;
color: black;
font-weight: bold;
text-align: center;
border: 1px solid black;
canvas {
height: 250px;
width: 100%;
}
}
.flex-item-three-js {
padding: 5px;
width: 32%;
height: 300px;
margin-top: 10px;
color: black;
font-weight: bold;
text-align: center;
border: 1px solid black;
canvas {
height: 250px !important;
width: 100% !important;
}
}
.flex-item-building-three-js {
padding: 5px;
width: 100%;
height: 350px;
margin-top: 10px;
color: black;
font-weight: bold;
text-align: center;
border: 1px solid black;
canvas {
height: 300px !important;
width: 100% !important;
}
}
import {
Vector2,
Vector3,
Box3,
Mesh,
PerspectiveCamera,
PointsMaterial,
MeshBasicMaterial,
Scene,
Color,
DoubleSide,
WebGLRenderer,
BufferGeometry,
Points,
Float32BufferAttribute
} from "https://esm.sh/three";
import {
OrbitControls,
TextGeometry,
FontLoader
} from "https://esm.sh/three/addons";
import * as BufferGeometryUtils from "https://esm.sh/three/addons/utils/BufferGeometryUtils.js";
import straightSkeleton from "https://esm.sh/straight-skeleton";
import earcut from "https://esm.sh/earcut";
const initialPolygon = {
type: "Polygon",
coordinates: [
[
[259521.14076069795, 6253167.799861707],
[259606.34863939675, 6253192.28359733],
[259590.5611086523, 6253248.230426137],
[259505.31590718575, 6253223.7466905145],
[259521.14076069795, 6253167.799861707]
]
]
};
const roofMinHeight = 48;
const roofMaxHeight = 58;
const roofHeight = 10;
const minHeight = 31;
/////////////// Affichage du polygone initial + construction du skeleton droit et son affichage //////////////////:
const drawInitial2d = (skeletonBox) => {
// 2D canvas
const initial2d = document.getElementById("initial2d");
const initialCtx = initial2d.getContext("2d");
initial2d.width = initial2d.clientWidth * window.devicePixelRatio;
initial2d.height = initial2d.clientHeight * window.devicePixelRatio;
initialCtx.fillStyle = "#eee";
initialCtx.fillRect(0, 0, initial2d.width, initial2d.height);
const padding = 15 * window.devicePixelRatio;
const scale = Math.min(
(initial2d.width - padding * 2) / (skeletonBox.maxX - skeletonBox.minX),
(initial2d.height - padding * 2) / (skeletonBox.maxY - skeletonBox.minY)
);
const offsetX =
(initial2d.width - (skeletonBox.maxX - skeletonBox.minX) * scale) / 2;
const offsetY =
(initial2d.height - (skeletonBox.maxY - skeletonBox.minY) * scale) / 2;
initialCtx.strokeStyle = "#000";
initialCtx.lineWidth = window.devicePixelRatio;
initialCtx.fillStyle = "#ffb6e9";
for (const polygon of initialPolygon.coordinates) {
initialCtx.beginPath();
for (let i = 0; i < polygon.length; i++) {
const vertex = polygon[i];
const x = (vertex[0] - skeletonBox.minX) * scale + offsetX;
const y = (vertex[1] - skeletonBox.minY) * scale + offsetY;
if (i === 0) {
initialCtx.moveTo(x, y);
} else {
initialCtx.lineTo(x, y);
}
}
initialCtx.closePath();
initialCtx.stroke();
initialCtx.fill();
}
};
const draw2d = (
skeletonBox,
skeleton,
cansvas_id,
draw_triangle = false,
burst_geometry = false,
display_vertices = false
) => {
// 2D canvas
const canvas2d = document.getElementById(cansvas_id);
const ctx = canvas2d.getContext("2d");
canvas2d.width = canvas2d.clientWidth * window.devicePixelRatio;
canvas2d.height = canvas2d.clientHeight * window.devicePixelRatio;
ctx.fillStyle = "#eee";
ctx.fillRect(0, 0, canvas2d.width, canvas2d.height);
const padding = 15 * window.devicePixelRatio;
const scale = Math.min(
(canvas2d.width - padding * 2) / (skeletonBox.maxX - skeletonBox.minX),
(canvas2d.height - padding * 2) / (skeletonBox.maxY - skeletonBox.minY)
);
const offsetX =
(canvas2d.width - (skeletonBox.maxX - skeletonBox.minX) * scale) / 2;
const offsetY =
(canvas2d.height - (skeletonBox.maxY - skeletonBox.minY) * scale) / 2;
ctx.strokeStyle = "#000";
ctx.lineWidth = window.devicePixelRatio;
ctx.fillStyle = "#ffb6e9";
for (const polygon of skeleton.polygons) {
ctx.beginPath();
if (polygon.length == 4) {
ctx.fillStyle = "green";
} else {
ctx.fillStyle = "#ffb6e9";
}
const vertices = [];
if (Array.isArray(polygon) == false) {
for (let i = 0; i < polygon.vertices.length; i++) {
const vertex = polygon.vertices[i];
const x = (vertex.x - skeletonBox.minX) * scale + offsetX;
let y = (vertex.y - skeletonBox.minY) * scale + offsetY;
if (burst_geometry) {
let isFirstPolygon =
skeleton.polygons
.filter((p) => p.vertices.length > 0)
.indexOf(polygon) == 0;
if (isFirstPolygon) {
y -= 20;
}
}
let position = "";
if (i == 0) {
position = "start";
} else if (i == polygon.vertices.length - 1) {
position = "end";
}
vertices.push([position, x, y]);
if (draw_triangle) {
if (i % 3 === 0) {
ctx.moveTo(x, y);
} else {
ctx.lineTo(x, y);
}
} else {
if (i === 0) {
ctx.moveTo(x, y);
} else {
ctx.lineTo(x, y);
}
}
}
} else {
for (let i = 0; i < polygon.length; i++) {
const vertex = skeleton.vertices[polygon[i]];
const x = (vertex[0] - skeletonBox.minX) * scale + offsetX;
const y = (vertex[1] - skeletonBox.minY) * scale + offsetY;
if (i === 0) {
ctx.moveTo(x, y);
} else {
ctx.lineTo(x, y);
}
}
}
ctx.closePath();
ctx.fill();
ctx.stroke();
if (burst_geometry) {
for (const vertice of vertices) {
ctx.beginPath();
ctx.fillStyle = "black";
ctx.font = "25px serif";
ctx.fillText(vertice[0], vertice[1], vertice[2]);
ctx.fillStyle = "red";
ctx.arc(vertice[1], vertice[2], 5, 0, Math.PI * 2);
ctx.closePath();
ctx.fill();
}
}
}
};
straightSkeleton.SkeletonBuilder.init().then(() => {
// Construction du skeleton
const skeleton = straightSkeleton.SkeletonBuilder.buildFromGeoJSONPolygon(
initialPolygon
);
// Construction de l'étendue de la géométrie afin de centrer la géométrie dans la vue
let minX = Infinity;
let minY = Infinity;
let maxX = -Infinity;
let maxY = -Infinity;
for (const vertex of skeleton.vertices) {
minX = Math.min(minX, vertex[0]);
minY = Math.min(minY, vertex[1]);
maxX = Math.max(maxX, vertex[0]);
maxY = Math.max(maxY, vertex[1]);
}
const skeletonBox = { minX, minY, maxX, maxY };
drawInitial2d(skeletonBox);
draw2d(skeletonBox, skeleton, "canvas_skeleton");
postProcessSkeleton(skeleton, skeletonBox);
});
/////////////// Post traitement du sekeleton droit + affichage ///////////////
export class StraightSkeletonResult {
vertices: Vector2[];
polygons: {
vertices: Vector2[];
edgeStart: Vector2;
edgeEnd: Vector2;
}[];
constructor(source) {
this.vertices = source.vertices.map((v) => new Vector2(v[0], v[1]));
this.polygons = source.polygons.map((p) => {
const vertices = p.map((v) => this.vertices[v]);
return {
vertices: vertices,
edgeStart: vertices[vertices.length - 1],
edgeEnd: vertices[0]
};
});
}
}
const postProcessSkeleton = (skeleton, skeletonBox) => {
const skeletonResult = new StraightSkeletonResult(skeleton);
for (let i = 0; i < skeletonResult.polygons.length; i++) {
const polygon = skeletonResult.polygons[i];
// Pour les polygone roses (ceux dont on doit conserver uniquement les sommets de fins et de debut)
// On recherchera les polygones rouges du skeleton adjacents à leurs extrémités
if (polygon.vertices.length === 3) {
// Polygone de notre skeleton adjacent au sommet du debut
const prevPolygon = skeletonResult.polygons.find(
(p) => p.edgeEnd.equals(polygon.edgeStart) && p.vertices.length > 3
);
// Polygone de notre skeleton adjacent au sommet de fin
const nextPolygon = skeletonResult.polygons.find(
(p) => p.edgeStart.equals(polygon.edgeEnd) && p.vertices.length > 3
);
if (prevPolygon && nextPolygon) {
// Projection des polygones rouges adjacents à notre polygone rose
// Le seul sommet de notre polygone rose qui est ni sa fin, ni son debut
const extrudedPoint = polygon.vertices.find((p) => {
return !p.equals(polygon.edgeStart) && !p.equals(polygon.edgeEnd);
});
// Le sommet de nos polygones rouges qui sont à projeter
const prevPolygonExtrudedPoint = prevPolygon.vertices.find((v) =>
v.equals(extrudedPoint)
);
const nextPolygonExtrudedPoint = nextPolygon.vertices.find((v) =>
v.equals(extrudedPoint)
);
// Le sommet situé au milieu du segment[sommet debut, sommet fin] de notre polygone rose
// Qui correspond au sommet souhaité pour notre projection
const middle = new Vector2()
.addVectors(polygon.edgeStart, polygon.edgeEnd)
.multiplyScalar(0.5);
prevPolygonExtrudedPoint.x = nextPolygonExtrudedPoint.x = middle.x;
prevPolygonExtrudedPoint.y = nextPolygonExtrudedPoint.y = middle.y;
// Projection faite, on conserve uniquement les sommets de debut et fin de notre polygone rose
polygon.vertices = [];
}
}
}
draw2d(skeletonBox, skeletonResult, "canvas_post_process");
evaluateHmax(skeletonResult, skeletonBox);
};
/////////////// Evaluation du Dmax et visualisation des sommets ///////////////
const _signedDistanceToLine = function (point, line) {
const lineVector = new Vector2().subVectors(line[1], line[0]);
const pointVector = new Vector2().subVectors(point, line[0]);
const cross = lineVector.x * pointVector.y - lineVector.y * pointVector.x;
const lineLength = lineVector.length();
return cross / lineLength;
};
const evaluateHmax = (skeletonPostProcessingResult, skeletonBox) => {
const SkeletonHeights = (function () {
let heights = [];
for (const polygon of skeletonPostProcessingResult.polygons) {
const edgeLine = [polygon.edgeStart, polygon.edgeEnd];
for (const vertex of polygon.vertices) {
const dst = _signedDistanceToLine(vertex, edgeLine);
heights.push(dst);
}
}
return heights;
})();
const hMax = Math.max(...SkeletonHeights);
document.getElementById("hmax").firstChild.textContent = hMax;
draw2d(
skeletonBox,
skeletonPostProcessingResult,
"canvas_post_process_vertices",
false,
true,
true
);
triangulateSkeleton(skeletonPostProcessingResult, skeletonBox, hMax);
};
/////////////// Triangulation du skeleton droit + affichage ///////////////
const triangulatedPolygon: {
polygons: {
vertices: Vector2[];
}[];
} = {
polygons: []
};
const triangulateSkeleton = (
skeletonPostProcessingResult,
skeletonBox,
hMax
) => {
for (const polygon of skeletonPostProcessingResult.polygons) {
const polygonVertices: number[] = [];
const polygonTriangleVertices: Vector2[] = [];
triangulatedPolygon.polygons.push({ vertices: polygonTriangleVertices });
for (const vertex of polygon.vertices) {
polygonVertices.push(vertex.x, vertex.y);
}
const triangles = earcut(polygonVertices).reverse();
for (let i = 0; i < triangles.length; i++) {
const index = triangles[i];
const x = polygonVertices[index * 2];
const y = polygonVertices[index * 2 + 1];
const vertex = new Vector2(x, y);
polygonTriangleVertices.push(vertex);
}
}
draw2d(
skeletonBox,
triangulatedPolygon,
"canvas_triangulated_skeleton",
true
);
addZtoVerticesToCreateRoof(skeletonPostProcessingResult, skeletonBox, hMax);
};
/////////////// Affectation des altitudes pour création de la toiture et son affichage ///////////////
const addZtoVerticesToCreateRoof = (
skeletonPostProcessingResult,
skeletonBox,
hMax
) => {
const roofPositions: Vector3[] = [];
for (const polygon of skeletonPostProcessingResult.polygons) {
const polygonVertices: number[] = [];
const edgeLine = [
new Vector2(polygon.edgeStart.x, polygon.edgeStart.y),
new Vector2(polygon.edgeEnd.x, polygon.edgeEnd.y)
];
for (const vertex of polygon.vertices) {
polygonVertices.push(vertex.x, vertex.y);
}
const triangles = earcut(polygonVertices).reverse();
for (let i = 0; i < triangles.length; i++) {
const index = triangles[i];
const x = polygonVertices[index * 2];
const y = polygonVertices[index * 2 + 1];
const vertex = new Vector2(x, y);
// distance maximale entre le point "vertex" et le vecteur [sommet debut, sommet fin] "edgeLine"
const dst = _signedDistanceToLine(vertex, edgeLine);
// Interpolation de l'altitude du point "vertex"
const vertexZ = roofMinHeight + (roofHeight * dst) / hMax;
roofPositions.push(new Vector3(x, y, vertexZ));
}
}
displayRoof(skeletonPostProcessingResult, skeletonBox, hMax, roofPositions);
};
const displayRoof = (
skeletonPostProcessingResult,
skeletonBox,
hMax,
positions
) => {
let camera, scene, renderer, controls;
const loader = new FontLoader();
////// Roof polygons
const material = new MeshBasicMaterial({
color: "#ffb6e9",
side: DoubleSide,
wireframe: false
});
const roofGeometry = new BufferGeometry();
roofGeometry.setFromPoints(positions);
const roofMesh = new Mesh(roofGeometry, material);
const scene_canvas = document.getElementById("scene_roof");
const center = new Vector3(
skeletonBox.minX + (skeletonBox.maxX - skeletonBox.minX) / 2,
skeletonBox.minY + (skeletonBox.maxY - skeletonBox.minY) / 2,
roofMinHeight + roofHeight / 2
);
function init() {
renderer = new WebGLRenderer({ canvas: scene_canvas });
renderer.setSize(scene_canvas.clientWidth, scene_canvas.clientHeight);
scene = new Scene();
scene.background = new Color("white");
camera = new PerspectiveCamera(
30,
scene_canvas.clientWidth / scene_canvas.clientHeight,
1,
10000
);
// Our up axes here is the Z
camera.up.set(0, 0, 1);
controls = new OrbitControls(camera, renderer.domElement);
camera.position.set(skeletonBox.maxX, skeletonBox.minY, minHeight * 4);
camera.lookAt(center);
controls.target.copy(center);
controls.update();
scene.add(roofMesh);
window.addEventListener("resize", onWindowResize);
}
function onWindowResize() {
camera.aspect = scene_canvas.clientWidth / scene_canvas.clientHeight;
camera.updateProjectionMatrix();
renderer.setSize(scene_canvas.clientWidth, scene_canvas.clientHeight);
}
function animate() {
requestAnimationFrame(animate);
controls.update();
renderer.render(scene, camera);
}
init();
animate();
// display Z labels
loader.load(
"https://esm.sh/three@0.172.0/examples/fonts/helvetiker_regular.typeface.json",
function (font) {
for (let index = 0; index < positions.length; index++) {
const roofVertice = positions[index];
const labelMesh = getPointLabelMesh(
font,
Math.ceil(roofVertice.z) + " m"
);
labelMesh.position.set(roofVertice.x, roofVertice.y, roofVertice.z);
scene.add(labelMesh);
//console.log(labelMesh, roofVertice);
}
}
);
const getPointLabelMesh = (font, label) => {
const geometry = new TextGeometry(label, {
font: font,
size: 2,
depth: 0.1
});
const labelMesh = new Mesh(
geometry,
new MeshBasicMaterial({
color: "black",
side: DoubleSide
})
);
labelMesh.rotation.y = Math.PI / 2;
labelMesh.rotation.z = Math.PI / 2;
return labelMesh;
};
displayWalls(skeletonPostProcessingResult, skeletonBox, hMax, roofGeometry);
};
/////////////// Modélisation des façades et leurs affichages ///////////////
function createWallTriangles(positions: Array<Vector3>) {
const postionsResult = positions.slice();
for (let index = 0; index < positions.length; index++) {
const A = positions[index];
const B = positions[index + 1] ? positions[index + 1] : positions[0];
// Triangle ABA'
postionsResult.push(A); // A
postionsResult.push(B); // B
postionsResult.push(new Vector3(A.x, A.y, minHeight)); // A'
// Triangle A',B,B'
postionsResult.push(new Vector3(A.x, A.y, minHeight)); // A'
postionsResult.push(B); // B
postionsResult.push(new Vector3(B.x, B.y, minHeight)); // B'
}
return postionsResult;
}
const displayWalls = (
skeletonPostProcessingResult,
skeletonBox,
Hmax,
roofGeometry
) => {
const vertices: Vector3[] = [];
let camera, scene, renderer, controls;
for (const polygon of skeletonPostProcessingResult.polygons) {
const edgeLine = [polygon.edgeStart, polygon.edgeEnd];
// les polygones avec uniquement 2 sommets
if (polygon.vertices.length == 0) {
const middle = new Vector2()
.addVectors(polygon.edgeStart, polygon.edgeEnd)
.multiplyScalar(0.5);
const startDst = _signedDistanceToLine(polygon.edgeStart, edgeLine);
const endDst = _signedDistanceToLine(polygon.edgeEnd, edgeLine);
// A
vertices.push(
new Vector3(
polygon.edgeStart.x,
polygon.edgeStart.y,
roofMinHeight + (roofHeight * startDst) / Hmax
)
);
// B
vertices.push(new Vector3(middle.x, middle.y, roofMaxHeight));
// C
vertices.push(
new Vector3(
polygon.edgeEnd.x,
polygon.edgeEnd.y,
roofMinHeight + (roofHeight * endDst) / Hmax
)
);
}
}
const wallTrianglesVertices = createWallTriangles(vertices);
//const material = new PointsMaterial({ color: 0x888888, size: 10 });
const material = new MeshBasicMaterial({
color: "#ffb6e9",
side: DoubleSide
});
const wallGeometry = new BufferGeometry();
wallGeometry.setFromPoints(wallTrianglesVertices);
const wallMesh = new Mesh(wallGeometry, material);
const center = new Vector3(
skeletonBox.minX + (skeletonBox.maxX - skeletonBox.minX) / 2,
skeletonBox.minY + (skeletonBox.maxY - skeletonBox.minY) / 2,
minHeight + roofHeight / 2
);
const walls_scene = document.getElementById("walls_scene");
function init() {
renderer = new WebGLRenderer({ canvas: walls_scene });
renderer.setSize(walls_scene.clientWidth, walls_scene.clientHeight);
scene = new Scene();
scene.background = new Color("white");
camera = new PerspectiveCamera(
70,
walls_scene.clientWidth / walls_scene.clientHeight,
1,
10000
);
// Our up axes here is the Z
camera.up.set(0, 0, 1);
controls = new OrbitControls(camera, renderer.domElement);
camera.position.set(skeletonBox.maxX, skeletonBox.maxY, roofMaxHeight * 2);
camera.lookAt(center);
controls.target.copy(center);
controls.update();
scene.add(wallMesh);
window.addEventListener("resize", onWindowResize);
}
function onWindowResize() {
camera.aspect = walls_scene.clientWidth / walls_scene.clientHeight;
renderer.setSize(walls_scene.clientWidth, walls_scene.clientHeight);
camera.updateProjectionMatrix();
}
function animate() {
requestAnimationFrame(animate);
controls.update();
renderer.render(scene, camera);
}
init();
animate();
displayBuilding(roofGeometry, wallGeometry, skeletonBox);
};
/////////////// Réprésentation du bâtiment complet ///////////////
const displayBuilding = (roofGeometry, wallGeometry, skeletonBox) => {
let camera, scene, renderer, controls;
const buildingGeometry = BufferGeometryUtils.mergeGeometries(
[roofGeometry, wallGeometry],
true
);
const roofMaterial = new MeshBasicMaterial({
color: "green",
side: DoubleSide
});
const wallMaterial = new MeshBasicMaterial({
color: "#ffb6e9",
side: DoubleSide
});
const center = new Vector3(
skeletonBox.minX + (skeletonBox.maxX - skeletonBox.minX) / 2,
skeletonBox.minY + (skeletonBox.maxY - skeletonBox.minY) / 2,
minHeight + roofHeight / 2
);
const buildingMesh = new Mesh(buildingGeometry, [roofMaterial, wallMaterial]);
const building_scene = document.getElementById("building_scene");
function init() {
renderer = new WebGLRenderer({ canvas: building_scene });
renderer.setSize(building_scene.clientWidth, building_scene.clientHeight);
scene = new Scene();
scene.background = new Color("white");
camera = new PerspectiveCamera(
70,
building_scene.clientWidth / building_scene.clientHeight,
1,
10000
);
// Our up axes here is the Z
camera.up.set(0, 0, 1);
controls = new OrbitControls(camera, renderer.domElement);
camera.position.set(skeletonBox.maxX, skeletonBox.maxY, roofMaxHeight * 2);
camera.lookAt(center);
controls.target.copy(center);
controls.update();
scene.add(buildingMesh);
window.addEventListener("resize", onWindowResize);
}
function onWindowResize() {
camera.aspect = building_scene.clientWidth / building_scene.clientHeight;
renderer.setSize(building_scene.clientWidth, building_scene.clientHeight);
camera.updateProjectionMatrix();
}
function animate() {
requestAnimationFrame(animate);
controls.update();
renderer.render(scene, camera);
}
init();
animate();
};
Also see: Tab Triggers