cssAudio - Activefile-genericCSS - ActiveGeneric - ActiveHTML - ActiveImage - ActiveJS - ActiveSVG - ActiveText - Activefile-genericVideo - ActiveLovehtmlicon-new-collectionicon-personicon-teamlog-outoctocatpop-outspinnerstartv

Pen Settings

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URL's added here will be added as <link>s in order, and before the CSS in the editor. If you link to another Pen, it will include the CSS from that Pen. If the preprocessor matches, it will attempt to combine them before processing.

Quick-add: + add another resource

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

Quick-add: + add another resource

Code Indentation

     

Save Automatically?

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

            
              <!DOCTYPE html>
<html>
<head>
	<meta charset="UTF-8">
	<meta http-equiv="X-UA-Compatible" content="IE=edge">
	<meta name="viewport" content="width=device-width, initial-scale=1">

	<title>linear regression with tensorflow</title>

	<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@0.11.1"> </script>
	<script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/0.6.0/p5.js"></script>
	<script src="https://cdnjs.cloudflare.com/ajax/libs/p5.js/0.6.0/addons/p5.dom.js"></script>
	<script src="sketch.js"></script>
</head>
<body>
</body>
</html>

            
          
!
            
              // Daniel Shiffman
// http://codingtra.in
// http://patreon.com/codingtrain

// Linear Regression with TensorFlow.js
// Video: https://www.youtube.com/watch?v=dLp10CFIvxI

let x_vals = [];
let y_vals = [];

let m, b;

const learningRate = 0.5;
const optimizer = tf.train.sgd(learningRate);

function setup() {
  createCanvas(400, 400);
  m = tf.variable(tf.scalar(random(1)));
  b = tf.variable(tf.scalar(random(1)));
}

function loss(pred, labels) {
  return pred.sub(labels).square().mean();
}

function predict(x) {
  const xs = tf.tensor1d(x);
  // y = mx + b;
  const ys = xs.mul(m).add(b);
  return ys;
}

function mousePressed() {
  let x = map(mouseX, 0, width, 0, 1);
  let y = map(mouseY, 0, height, 1, 0);
  x_vals.push(x);
  y_vals.push(y);
}

function draw() {

  tf.tidy(() => {
    if (x_vals.length > 0) {
      const ys = tf.tensor1d(y_vals);
      optimizer.minimize(() => loss(predict(x_vals), ys));
    }
  });

  background(0);

  stroke(255);
  strokeWeight(8);
  for (let i = 0; i < x_vals.length; i++) {
    let px = map(x_vals[i], 0, 1, 0, width);
    let py = map(y_vals[i], 0, 1, height, 0);
    point(px, py);
  }


  const lineX = [0, 1];

  const ys = tf.tidy(() => predict(lineX));
  let lineY = ys.dataSync();
  ys.dispose();

  let x1 = map(lineX[0], 0, 1, 0, width);
  let x2 = map(lineX[1], 0, 1, 0, width);

  let y1 = map(lineY[0], 0, 1, height, 0);
  let y2 = map(lineY[1], 0, 1, height, 0);

  strokeWeight(2);
  line(x1, y1, x2, y2);


  console.log(tf.memory().numTensors);
  //noLoop();
}

            
          
!
999px
Loading ..................

Console