Pen Settings

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URL's added here will be added as <link>s in order, and before the CSS in the editor. If you link to another Pen, it will include the CSS from that Pen. If the preprocessor matches, it will attempt to combine them before processing.

+ add another resource

You're using npm packages, so we've auto-selected Babel for you here, which we require to process imports and make it all work. If you need to use a different JavaScript preprocessor, remove the packages in the npm tab.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Use npm Packages

We can make npm packages available for you to use in your JavaScript. We use webpack to prepare them and make them available to import. We'll also process your JavaScript with Babel.

⚠️ This feature can only be used by logged in users.

Code Indentation

     

Save Automatically?

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

HTML Settings

Here you can Sed posuere consectetur est at lobortis. Donec ullamcorper nulla non metus auctor fringilla. Maecenas sed diam eget risus varius blandit sit amet non magna. Donec id elit non mi porta gravida at eget metus. Praesent commodo cursus magna, vel scelerisque nisl consectetur et.

            
              <h1>Line Graph with Raphael.js</h1>
<div id="line-graph" class="line-graph"></div>
            
          
!
            
              @import "compass/css3";

h1 {
  width: 1023px;
  margin: 20px auto 0;
}
.line-graph {
		width: 1023px;
		height: 322px;
		margin: 20px auto 10px;
		background-image: url();
}
            
          
!
            
              $(document).ready(function(){
  initLineGraph();
});

/* I am fully aware that all of this code should be made into a class or jQuery plugin */

/* point attributes object to pass to raphael.js*/
var pointOptions = {
	'fill' : '#333333',
	'stroke' : '#7a7a7a',
	radius : 6
}

/* line attributes object to pass to raphael.js*/    
var lineOptions = {
  'stroke': 'rgba(102, 102, 102, .08)',
  'stroke-width': 2,
  'fill': '#000',
  /* nice inner shadow for line, requires line be convex and closed off */
  'fill-opacity': 0.03 /* <-- doesn't work in old IEs */
}

/* initialize graph */    
function initLineGraph () {
	/* set up raphael.js canvas with the elements of the graph element */
  var paper = new Raphael(document.getElementById('line-graph'), $('#line-graph').width(), $('#line-graph').height());  
  graphData.paper = paper;
  
  /* create initial line*/
  var path = createPathString(graphData);
  /* draw intial line with raphael.js */
  var line = paper.path(path); 
  
  /* set line drawing attributes */
  line.attr(lineOptions);
	
  /* save line to our global(I know, I know) data object */
  graphData.line = line;

  /* draw initial points */
  drawPoints(graphData, pointOptions);
  
  /* set graph auto changing (for demo purposes) */
  setInterval(function(){
    advanceGraph();
  }, 3000);

}

/* changes between data sets in global graph object */
function advanceGraph() {
  if(graphData.current < graphData.charts.length -1) {
    graphData.current++;
  }
  else {
    graphData.current = 1;
  }
  
  /* animate to new data positions */
  animatePoints(graphData, graphData.charts[graphData.current]);
}

/* draw initial points */
function drawPoints(data, options) {
  
  /* point radius */
  var radius = options.radius;
  /* set points to initial data set */
  var points = data.charts[0].points;
	
	/* iterate through points */
  for (var i = 0, length = points.length; i < length; i++) {
    /* calculate x and y positions: x delta is a constant, y value is intially set to start at 0 on y axis */
    /* xOffset and yOffets values are the locations within the canvas where the x and y axes are located */
    var xPos = data.xOffset + (i * data.xDelta);
		var yPos = data.yOffset;
    
    /* draw */
    var circle = data.paper.circle(xPos, yPos, radius);
		circle.attr(pointOptions);
    /* store raphael.js point object in global data set */
		points[i].point = circle;
	}
}

/* animate points into new positions */
/* data is the global data object, newData is the new dataset to animate to*/
function animatePoints(data, newData) {
	/* varibale to hold new raphael path string */
  var newPath = '';
	/* upper and lower limits are the limits of the data set and are used to scale the data values into pixel positions */
  var upperLimit = parseInt(newData.upper);
	if(isNaN(upperLimit)) {
		/* don't set to 0 to avoid divide by 0 error */
    upperLimit = 1;
	}
	var lowerLimit = parseInt(newData.lower);
	if(isNaN(lowerLimit)) {
		lowerLimit = 0;
	}
  
  /* used to calculate pixel positions based on limits */ 
	var scaleFactor = data.yOffset / (upperLimit - lowerLimit) ; 

  /* get initial points from global data  */
  var points = data.charts[0].points;
  
  /* loop through points */
	for (var i = 0, length = points.length; i < length; i++) {
		/* if this is the first point add an 'M' set to start drawing the raphael.js path  or use and 'L' set */
    if(i == 0) {
      /* I have hard coded the start of the line, sorry */
      newPath += 'M 25 291 L ';
			/* since the x axis is constant, pass along the original x coordinate */
      newX = data.xOffset + ' ';
			newPath += newX;
			/* calculate the new y value using scale factor and limits */
      newY = data.yOffset - ((newData.points[i].value - lowerLimit) * scaleFactor) + ' ';
			/* add new y to path string */
      newPath += newY;
		}
		else {
			newPath += ' L ';
			newX = data.xOffset + (i * data.xDelta) + ' ';
			newPath += newX;
			newY = data.yOffset - ((newData.points[i].value - lowerLimit) * scaleFactor);
			newPath += newY;
		}
    
    /* animate raphael.js points to new positions */
		points[i].point.animate({
				cy : data.yOffset - ((newData.points[i].value - lowerLimit) * scaleFactor)
			},
			800,
			'ease-in-out'
		);
	}
  /* add end of path string, sorry hardcoded again */
	newPath += ' L 989 291 Z';
  
  /* animate raphael.js line into new position */
  data.line.animate({path : newPath}, 800, 'ease-in-out');
}

/* create a raphael.js path string based on a data set */
function createPathString(data) {

  var points = data.charts[data.current].points;

  
	var path = 'M 25 291 L ' + data.xOffset + ' ' + (data.yOffset - points[0].value);
	var prevY = data.yOffset - points[0].value;

	for (var i = 1, length = points.length; i < length; i++) {
		path += ' L ';
		path += data.xOffset + (i * data.xDelta) + ' ';
		path += (data.yOffset - points[i].value);

		prevY = data.yOffset - points[i].value;
	}
	path += ' L 989 291 Z';
	return path;
}

/**** Global Data Object *****/
  var graphData = {
    current     : 0,
    /* constant distance between points on the x axis */
    xDelta      : 69,
    /* location of y axis in horizontal space */
    xOffset     : 214,
    /* location of x axis in vertical space */
    yOffset     : 289,
    charts      :[
        /* initial data set */
        {
            /* lower limit of the data set (can be used to flatten or exaggerate the graph) */
            lower  : 0,
            /* upper limit is the upper limit of the data set (set it a bit above your highest data point)*/
            /* used to convert data values into pixel positions */
            upper  : 200,
            points : [
                { value : 0},
                { value : 0},
                { value : 0},
                { value : 0},
                { value : 0},
                { value : 0},
                { value : 0},
                { value : 0},
                { value : 0},
                { value : 0},
                { value : 0},
                { value : 0}
            ]
        },
        {
            lower  : 0,
            upper  : 200,
            points : [
                { value : 58},
                { value : 64},
                { value : 12},
                { value : 90},
                { value : 101},
                { value : 87},
                { value : 53},
                { value : 72},
                { value : 88},
                { value : 109},
                { value : 45},
                { value : 37}
            ]
        },
        {
            lower  : 0,
            upper  : 200,
            points : [
                { value : 132},
                { value : 112},
                { value : 124},
                { value : 73},
                { value : 92},
                { value : 47},
                { value : 67},
                { value : 35},
                { value : 112},
                { value : 90},
                { value : 75},
                { value : 62}
            ]
        }
    ]
};
            
          
!
999px
🕑 One or more of the npm packages you are using needs to be built. You're the first person to ever need it! We're building it right now and your preview will start updating again when it's ready.

Console