Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URLs added here will be added as <link>s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Auto Save

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                <div class="text-wrap">
	<h1>Followers!</h1>
	<a href="https://codepen.io/MillerTime/full/qBZRpQV" target="_blank">Check out the interactive version here</a>
</div>
<img src="" />
              
            
!

CSS

              
                html,
body {
	height: 100%;
}

body {
	background-image: radial-gradient(ellipse at center, #2c0c00 8.0%, #000 100.0%);
	background-size: 160% 160%;
	background-position: 50% 50%;
	overflow: hidden;
}

.text-wrap {
	display: flex;
	flex-direction: column;
	align-items: center;
	position: fixed;
	z-index: 1;
	top: 65vh;
	width: 100%;
}

h1 {
	color: rgb(255, 94, 30);
	font-family: 'Luckiest Guy', sans-serif;
	font-size: min(12vw, 64px);
	text-align: center;
	margin-bottom: 40px;
}

a {
	color: rgb(255, 94, 30);
	font-family: system-ui;
	font-size: 15px;
	text-decoration: none;
	border-bottom: 1px solid rgb(255, 94, 30);
	opacity: 0.65;
}

a:hover,
a:focus {
	opacity: 1;
}

@media (max-width: 600px) {
	a {
		font-size: 12px;
	}
}

img {
	display: none;
}
              
            
!

JS

              
                			console.clear();

////////////
// CONFIG //
////////////

// Affects number of cubes generated
const DENSITY = 1;
const LAYERS = 5;
// Colors are in rgb format
const COLORS = [
	[1.000, 0.655, 0.231],
	[1.000, 0.365, 0.114],
	[0.898, 0.078, 0.392],
	[0.424, 0.5, 0.114]
];
const GAMMA = 1.8;
const CLEAR_COLOR = [0, 0, 0, 0];
// Time in seconds for all cubes to wrap around once.
const SCROLL_TIME = 10;
// Radians per second
const ROTATE_MIN = 0.5;
const ROTATE_MAX = 4.2;
// Meters
const SIZE_MIN = 0.032;
const SIZE_MAX = 0.064;
// Randomize placement (meters)
const OFFSET_JITTER = 0.025;
// Camera controls
const CAMERA_DISTANCE = 3.5;
const CAMERA_FOV = 0.7;
const CAMERA_NEAR = 1;
const CAMERA_FAR = 100;


////////////////////////
// COMPUTED CONSTANTS //
////////////////////////

// Number of cubes on each axis
const COUNT_X = Math.floor(32 * DENSITY);
const COUNT_Y = Math.floor(16 * DENSITY);
const COUNT_Z = Math.floor(LAYERS);
const COUNT_TOTAL = COUNT_X * COUNT_Y * COUNT_Z;
// Bounding volume dimensions (meters)
const BOUND_WIDTH = 2;
const BOUND_HEIGHT = COUNT_Y / COUNT_X * BOUND_WIDTH;
const BOUND_DEPTH = COUNT_Z / COUNT_X * BOUND_WIDTH;


//////////////////
// MATH HELPERS //
//////////////////

const TAU = Math.PI * 2;
const random = (min, max) => Math.random() * (max - min) + min;
const interpolate = (a, b, mix) => (b - a) * mix + a;


/////////////////
// APPLICATION //
/////////////////

const regl = createREGL({ extensions: ['angle_instanced_arrays'] });

const textTexture = regl.texture({
	format: 'rgb',
	data: document.querySelector('img'),
	mag: 'linear',
	min: 'linear'
});

const viewMatrix = mat4.fromTranslation([], [0, 0.25, -CAMERA_DISTANCE]);
const projectionMatrix = [];
const projectionViewMatrix = [];

// Gamma correct colors
COLORS.forEach(c => {
	c[0] = Math.pow(c[0], GAMMA);
	c[1] = Math.pow(c[1], GAMMA);
	c[2] = Math.pow(c[2], GAMMA);
});

// Color of each cube
const colors = new Float32Array(3 * COUNT_TOTAL);
// Position of each cube
const offsets = new Float32Array(3 * COUNT_TOTAL);
// Base scale of each cube
const scales = new Float32Array(COUNT_TOTAL);
// Axis of rotation for each cube
const rotationAxes = new Float32Array(3 * COUNT_TOTAL);
// Rotation angle for each cube
const angles = new Float32Array(COUNT_TOTAL);
// Rotation speed for each cube (radians/s)
const rotationSpeeds = new Float32Array(COUNT_TOTAL);

// `angleBuffer` will be updated each frame, to animate rotations
const angleBuffer = regl.buffer({
	data: angles,
	type: 'float',
	usage: 'dynamic'
});

// Generate all data.
// Some buffers have a stride of 1, others have a stride of 3.
let i = 0;
let i3 = 0;
for (let x=0; x<COUNT_X; x++) {
	const xPercent = x / COUNT_X;
	for (let y=0; y<COUNT_Y; y++) {
		const yPercent = y / COUNT_Y;
		for (let z=0; z<COUNT_Z; z++) {
			const zPercent = z / COUNT_Z;
			const color = COLORS[Math.random() * COLORS.length | 0];
			const axis = vec3.random([]);
			colors[i3] = color[0];
			colors[i3+1] = color[1];
			colors[i3+2] = color[2];
			offsets[i3] = xPercent*BOUND_WIDTH - 0.5*BOUND_WIDTH + random(-OFFSET_JITTER, OFFSET_JITTER);
			offsets[i3+1] = yPercent*BOUND_HEIGHT - 0.5*BOUND_HEIGHT + random(-OFFSET_JITTER, OFFSET_JITTER);
			offsets[i3+2] = zPercent*BOUND_DEPTH - 0.5*BOUND_DEPTH + random(-OFFSET_JITTER, OFFSET_JITTER);
			scales[i] = 0.5 * random(SIZE_MIN, SIZE_MAX);
			rotationAxes[i3] = axis[0];
			rotationAxes[i3+1] = axis[1];
			rotationAxes[i3+2] = axis[2];
			angles[i] = Math.random() * TAU;
			rotationSpeeds[i] = random(ROTATE_MIN, ROTATE_MAX);
			i++;
			i3 += 3;
		}
	}	
}

// Shader setup, using instancing to draw many copies of one cube.
// Note most animation and math is done in the vertex shader on the GPU,
// including generating rotation matrices. Many common instancing approaches
// upload a tranform matrix for each instance each frame, but here we only
// upload a single float each frame (the angle) and a rotation matrix is built
// from that and a static rotation axis.
const draw = regl({
	cull: { enable: true },
	frontFace: 'cw',
	vert: `
		precision highp float;

		attribute vec3 a_position;
		attribute vec3 a_normal;
		attribute vec3 a_color;
		attribute vec3 a_offset;
		attribute float a_scale;
		attribute vec3 a_rotationAxis;
		attribute float a_angle;
		uniform sampler2D u_tex;
		uniform float u_scrollOffset;
		uniform mat4 u_projectionViewMatrix;
		varying vec3 v_color;

		mat4 rotationMatrix(vec3 axis, float angle) {
			float s = sin(angle);
			float c = cos(angle);
			float oc = 1.0 - c;
			return mat4(oc * axis.x * axis.x + c,           oc * axis.x * axis.y - axis.z * s,  oc * axis.z * axis.x + axis.y * s,  0.0,
									oc * axis.x * axis.y + axis.z * s,  oc * axis.y * axis.y + c,           oc * axis.y * axis.z - axis.x * s,  0.0,
									oc * axis.z * axis.x - axis.y * s,  oc * axis.y * axis.z + axis.x * s,  oc * axis.z * axis.z + c,           0.0,
									0.0,                                0.0,                                0.0,                                1.0);
		}

		void main() {
			vec3 offset = a_offset;
			offset.x = mod(offset.x + u_scrollOffset + 1.0, 2.0) - 1.0;
			vec2 texCoord = vec2(
				(offset.x + 1.0) * 0.5,
				1.0 - (offset.y + 0.5)
			);
			float texScale = texture2D(u_tex, texCoord).r;
			mat4 rotation = rotationMatrix(a_rotationAxis, a_angle);
			vec3 position = (rotation * vec4(a_position, 1.0)).xyz;
			vec3 normal = (rotation * vec4(a_normal, 1.0)).xyz;
			gl_Position = u_projectionViewMatrix * vec4(position * a_scale * texScale + offset, 1.0);
			v_color = a_color * min(1.0, normal.z + 0.1);
		}
	`,
	frag: `
		precision highp float;

		varying vec3 v_color;

		void main() {
			gl_FragColor = vec4(v_color, 1.0);
		}
	`,
	attributes: {
		// unit cube triangle vertices
		a_position: getCubeVertices(),
		a_normal: getCubeNormals(),
		a_color: {
			buffer: regl.buffer(colors),
			divisor: 1 // one per cube
		},
		a_offset: {
			buffer: regl.buffer(offsets),
			divisor: 1 // one per cube
		},
		a_scale: {
			buffer: regl.buffer(scales),
			divisor: 1 // one per cube
		},
		a_rotationAxis: {
			buffer: regl.buffer(rotationAxes),
			divisor: 1 // one per cube
		},
		a_angle: {
			buffer: angleBuffer,
			divisor: 1 // one per cube
		}
	},
	uniforms: {
		u_tex: textTexture,
		u_scrollOffset: ({ time }) => {
			return time % SCROLL_TIME / SCROLL_TIME * BOUND_WIDTH;
		},
		u_projectionViewMatrix: ({ viewportWidth, viewportHeight }) => {
			const aspectRatio = viewportWidth / viewportHeight;
			let finalFovY = CAMERA_FOV;
			// On narrow screens, widen FOV (zoom out)
			if (aspectRatio < 1) {
				finalFovY = interpolate(CAMERA_FOV / aspectRatio, CAMERA_FOV, 0.5);
				// Prevent FOV from getting too wide and approaching 180 degrees
				finalFovY = Math.min(finalFovY, 0.8*Math.PI);
			}
			mat4.perspective(projectionMatrix, finalFovY, aspectRatio, CAMERA_NEAR, CAMERA_FAR);
			mat4.multiply(projectionViewMatrix, projectionMatrix, viewMatrix);
			return projectionViewMatrix;
		}
	},
	count: 36,
	instances: COUNT_TOTAL
});

// Animation loop
let lastTime = -1;
regl.frame(({ time }) => {
	const timeDelta = lastTime === -1 ? 0 : time - lastTime;
	lastTime = time;
	
	regl.clear({ color: CLEAR_COLOR });
	
	for (let i=0; i<COUNT_TOTAL; i++) {
		const speed = rotationSpeeds[i];
		let angle = angles[i] + speed*timeDelta;
		if (angle > TAU) {
			angle -= TAU;
		}
		angles[i] = angle;
	}
	
	angleBuffer.subdata(angles);
	
	draw();
});



//////////////////
// DATA HELPERS //
//////////////////

function getCubeVertices() {
	const ltf = [-1, 1, 1];
	const ltb = [-1, 1, -1];
	const lbf = [-1, -1, 1];
	const lbb = [-1, -1, -1];
	const rtf = [1, 1, 1];
	const rtb = [1, 1, -1];
	const rbf = [1, -1, 1];
	const rbb = [1, -1, -1];
	return [
		// top
		ltf, ltb, rtb,
		rtb, rtf, ltf,
		// bottom
		lbb, lbf, rbf,
		rbf, rbb, lbb,
		// left
		ltb, ltf, lbb,
		lbb, ltf, lbf,
		// right
		rbf, rtf, rtb,
		rtb, rbb, rbf,
		// front
		lbf, ltf, rtf,
		rtf, rbf, lbf,
		// back
		rtb, ltb, lbb,
		lbb, rbb, rtb
	];
}

function getCubeNormals() {
	const up = [0, 1, 0];
	const down = [0, -1, 0];
	const left = [-1, 0, 0];
	const right = [1, 0, 0];
	const front = [0, 0, 1];
	const back = [0, 0, -1];
	return [
		// top
		up, up, up, up, up, up,
		// bottom
		down, down, down, down, down, down,
		// left
		left, left, left, left, left, left,
		// right
		right, right, right, right, right, right,
		// front
		front, front, front, front, front, front,
		// back
		back, back, back, back, back, back
	];
}

              
            
!
999px

Console