Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URLs added here will be added as <link>s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Auto Save

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                <input type="range" min="1" max="6" value="1" step="1" />
<section>
  <p>Manually create an SVG path over the original illustration</p>
  <p>Draw dots along the paths with a different delay for each one</p>
  <p>Use two gradients to assign a color on each dot</p>
  <p>Make the radii of the dots vary to make the result less flat</p>
  <p>Translate the dots during the animation and use an elastic easing</p>
  <p>Render more dots to simulate continuous lines</p>
</section>
<canvas></canvas>
<svg viewBox="0 0 400 488">
  <path d="m 376.3299,351.06186 c 4.45361,47.0103 -51.46392,124.20619 -127.17526,105.40206 -75.71134,-18.80413 9.89692,-176.65979 69.7732,-140.53608 59.87628,36.12371 -80.02665,144.51868 -165.7732,140.53608 -51.44793,-2.38956 -95.0103,-28.70103 -80.65979,-101.4433 14.35051,-72.74227 207.83505,-255.3402 264.24742,-194.96907 56.41237,60.37113 -171.71134,177.15461 -229.60825,173.6907 -57.89691,-3.46391 -114.55671,-62.35051 -65.31959,-137.567 49.23712,-75.21649 131.76348,-45.721 131.76348,-45.721" fill="none" stroke="#00ff00" stroke-linecap="round" stroke-width="2" />
  <path d="M207.83505,122.567C243.83505,117 308.04124,69.98969 288.24742,21.49485C215.62887,21.49485 199.858,109.20619 203.01031,131.84536" fill="none" stroke="#00ff00" stroke-linecap="round" stroke-width="2" />
</svg>
<img src="" alt="">
              
            
!

CSS

              
                svg {
  width: 70vmin;
  position: absolute;
  left: 50%;
  top: 48%;
  transform: translate(-50%, -50%);
  transition: 0.15s ease-out;
  z-index: 1;
  path {
    opacity: 0;
  }
}
img {
  width: 70vmin;
  position: absolute;
  left: 50%;
  top: 48%;
  transform: translate(-50%, -50%);
  opacity: 0;
}
body {
  height: 100vh;
  overflow: hidden;
  font-family: 'Yanone Kaffeesatz', sans-serif;
}
canvas {
  position: absolute;
  left: 50%;
  top: 48%;
  transform: translate(-50%, -50%);
}


@mixin track {
  box-sizing: border-box;
  height: 6px;
	background: #000;
  -webkit-appearance: none;
  appearance: none;
}

@mixin thumb {
  box-sizing: border-box;
	width: 30px;
  height: 30px;
	border-radius: 50%;
	background: #000;
  border: 2px solid white;
  -webkit-appearance: none;
  appearance: none;
  cursor: grab;
}

input {
  position: fixed;
  left: 50%;
  bottom: 20px;
  transform: translateX(-50%);
  width: 80%;
  height: 34px;
  max-width: 400px;
  background: transparent;
  -webkit-appearance: none;
  appearance: none;
  z-index: 10;
  &:active {
    cursor: grabbing;
  }
  &::-webkit-slider-runnable-track {@include track }
	&::-moz-range-track { @include track }
	&::-ms-track { @include track }
  
  &::-webkit-slider-thumb {margin-top: -12px;@include thumb}
	&::-moz-range-thumb { @include thumb }
  &::-ms-thumb {margin-top:0px;@include thumb}
}

section {
  box-sizing: border-box;
  font-size: 40px;
  position: fixed;
  left: 0;
  top: 20px;
  width: 100%;
  text-align: center;
  padding: 10px 10%;
  z-index: 10;
  pointer-events: none;
  text-shadow: 0 0 3px white, 0 0 4px white, 0 0 5px white;
  background: rgba(255, 255, 255, 0.7);
  p {
    margin: 0;
    display: none;
  }
  @media (max-width: 500px) {
    font-size: 24px;
  }
}
              
            
!

JS

              
                console.clear();

/* Fetch all the dom elements in the page */
const canvas = document.querySelector('canvas');
const svg = document.querySelector('svg');
const paths = svg.querySelectorAll('path');
const ctx = canvas.getContext('2d');
let width = 0;
let height = 0;
let step = parseInt(document.querySelector('input').value);
const texts = document.querySelectorAll('section p');

/* Define the two gradients we need for the paths */
const gradients = [
  [
    [0, [118, 179, 236]],
    [10, [41, 102, 193]],
    [20, [129, 77, 185]],
    [30, [129, 77, 185]],
    [50, [250, 148, 170]],
    [60, [237, 70, 54]],
    [70, [253, 134, 100]],
    [80, [254, 156, 33]],
    [90, [250, 213, 0]],
    [100, [171, 211, 96]]
  ],
  [
    [0, [1, 123, 147]],
    [100, [131, 201, 167]]
  ]
];

const dots = []; // Array to store all dots
class Dot {
  constructor (x, y, color, delay, index) {
    this._x = x; // origin X coordinate of the dot
    this._y = y; // origin Y coordinate of the dot
    this.x = x; // Y coordinate of the dot
    this.y = y; // Y coordinate of the dot
    this.r = 0; // Radius of the dot
    this.index = index; // Index of the dot along the path
    this.color = color; // RGB color of the dot
    this.delay = (delay * 0.9); // Delay for the animation
    this.tl = null; // GSAP tween
  }
  tween () {
    // Kill the previous tween to avoid ovrlapping animations
    if (this.tl) this.tl.kill();
    
    /// Create a new GSAP animation for the dot
    this.tl = gsap.fromTo(this, {
      r: 0,
      // Add translation animation from step 5
      x: () => step > 4 ? this._x - 0.05 : this._x,
      y: () => step > 4 ? this._y - 0.05 : this._y
    }, {
      x: this._x,
      y: this._y,
      r: () => {
        if (step < 4) {
          // Until step 4, draw only 1 of 20 dots
          return this.index % 20 === 0 ? width * 0.03 : 0;
        } else if (step < 6) {
          // From step 4, draw only 1 of 20 dots with custom radius
          return this.index % 20 === 0 ? width * 0.03 + (Math.abs(Math.sin(this.delay * 3.4 - 1.5)) * width * 0.02) : 0;
        } else {
          // On step 6, draw every dot with custom radius
          return width * 0.03 + (Math.abs(Math.sin(this.delay * 3.4 - 1.5)) * width * 0.02);
        }
      },
      duration: 1.8,
      ease: 'elastic.out(1, 0.5)',
      delay: () => {
        if (step === 1) {
          return 0;
        } else {
          return (step > 1 && step < 5) ? this.delay * 4 : this.delay;
        }
      }
    });
    
  }
  draw () {
    /* On step 1, we don't need to render the dots*/
    if (step === 1) return;
    
    /* Once step 3 reached, draw dots with color */
    if (step > 2) {
      ctx.fillStyle = this.color;
    } else {
      /* Else, draw them black */
      ctx.fillStyle = 'black';
    }
    
    /* Draw a circle on the canvas */
    ctx.beginPath();
    ctx.arc(this.x * width, this.y * height, this.r, 0, 2 * Math.PI);
    ctx.fill();
  }
}

function init () {
  // Calculate the total length of both paths
  const totalLength = [...paths].reduce((p) => p.getTotalLength());
  // The sum_length variable helps us knowing at what distance the dot will be from the first dot along both paths
  let sum_length = 0;
  
  // Loop through both paths
  paths.forEach((path, pathIndex) => {
    // Get the path length
    const length = path.getTotalLength();
    // Loop through that path length with a new dot every two pixels
    for (let i = 0; i < length; i+=2) {
      // Get the coordinates of the point along the path
      const point = path.getPointAtLength(i);
      // Divide the coordinates by the viewbox width/height to get a normalized value
      const x = point.x / 400;
      const y = point.y / 488;
      // Get the color of the dot from the gradient algorithm
      const RGB_color = getColor(pathIndex, length, i / length);
      const color = `rgb(${RGB_color[0]}, ${RGB_color[1]}, ${RGB_color[2]})`;
  
      // Create a new dot from all the data above
      const dot = new Dot(x, y, color, (1.5 - (sum_length / totalLength)), i);
      dots.push(dot);
      
      // Increment the sum_length
      sum_length += 2;
    }
  });
}

/* Start gradient code */
/* Code from https://stackoverflow.com/a/30144587 */
function pickHex(color1, color2, weight) {
  var p = weight;
  var w = p * 2 - 1;
  var w1 = (w/1+1) / 2;
  var w2 = 1 - w1;
  var rgb = [Math.round(color1[0] * w1 + color2[0] * w2),
      Math.round(color1[1] * w1 + color2[1] * w2),
      Math.round(color1[2] * w1 + color2[2] * w2)];
  return rgb;
}
function getColor(pathIndex, pathLength, colorIndex) {
  var colorRange = [];
  let stop = false;
  const gradient = gradients[pathIndex];
  gradient.forEach((step, index) => {
    if (!stop && (colorIndex * 100) <= step[0]) {
      if (index === 0) {
        index = 1;
      }
      colorRange = [index - 1, index];
      stop = true;
    }
  });

  //Get the two closest colors
  var firstcolor = gradient[colorRange[0]][1];
  var secondcolor = gradient[colorRange[1]][1];
  //Calculate ratio between the two closest colors
  var firstcolor_x = pathLength * (gradient[colorRange[0]][0]/100);
  var secondcolor_x = pathLength * (gradient[colorRange[1]][0]/100)-firstcolor_x;
  var slider_x = pathLength * colorIndex - firstcolor_x;
  var ratio = slider_x / secondcolor_x;

  //Get the color with pickHex(thx, less.js's mix function!)
  return pickHex(secondcolor, firstcolor, ratio);
}
/* End gradient code */


function render () {
  requestAnimationFrame(render);
  // Clear the canvas
  ctx.clearRect(0, 0, width, height);
  
  // Render every dot
  dots.forEach(dot => {
    dot.draw();
  });
}

/* Listen to resize event on the window */
window.addEventListener('resize', onResize);
function onResize () {
  // Get the SVG width & height
  width = svg.clientWidth;
  height = svg.clientHeight;

  // Apply the nw dimensions to the canvas
  canvas.width = width;
  canvas.height = height;
  
  // Restart everything
  onUpdate();
}

/* Listen when user is updating the input */
document.querySelector('input').addEventListener('input', (e) => {
  // Get the value of the step
  step = parseInt(e.target.value);
  // Restart everything
  onUpdate();
});

function onUpdate () {
  texts.forEach(text => text.style.display = 'none');
  texts[step - 1].style.display = 'block';
  
  if (step === 1) {
    /* STEP 1 */
    /* Play the SVG animation of the paths */
    gsap.set('path', {
      opacity: 1,
      overwrite: true,
      strokeDasharray: (a, b) => {
        return b.getTotalLength();
      },
      strokeDashoffset: (a, b) => {
        return b.getTotalLength() * 3;
      },
    });
    gsap.to('path', {
      strokeDashoffset: (a, b) => {
        return b.getTotalLength() * 4;
      },
      delay: (a) => Math.abs(a - 1) * 3,
      duration: 2,
      ease: 'power2.inOut'
    });
    gsap.to('img', {
      opacity: 0.6,
      duration: 0.2
    });
  } else if (step < 4) {
    /* STEPS 2-3 */
    /* Show the SVG paths but hide the image */
    gsap.to('path', {
      opacity: 1,
      strokeDashoffset: (a, b) => {
        return b.getTotalLength() * 4;
      },
      overwrite: true
    });
    gsap.to('img', {
      opacity: 0,
      duration: 0.2
    });
  } else {
    /* STEPS 4-5-6 */
    /* Hide the SVG paths and the image */
    gsap.to([paths, 'img'], {
      opacity: 0,
      duration: 0.2
    });
  }
  
  /* Restart the animation of each dot */
  dots.forEach(dot => {
    dot.tween();
  });
}


init();
onResize();
requestAnimationFrame(render);

              
            
!
999px

Console