Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URL's added here will be added as <link>s in order, and before the CSS in the editor. If you link to another Pen, it will include the CSS from that Pen. If the preprocessor matches, it will attempt to combine them before processing.

+ add another resource

JavaScript

Babel is required to process package imports. If you need a different preprocessor remove all packages first.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Behavior

Save Automatically?

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML Settings

Here you can Sed posuere consectetur est at lobortis. Donec ullamcorper nulla non metus auctor fringilla. Maecenas sed diam eget risus varius blandit sit amet non magna. Donec id elit non mi porta gravida at eget metus. Praesent commodo cursus magna, vel scelerisque nisl consectetur et.

HTML

              
                <output id=coord></output>
              
            
!

CSS

              
                body {
  background:#111;
  color:#fff;
  margin: 0;
  display: flex;
  align-items:center;
  justify-content:center;
  flex-direction:column;
  height: 100vh;
  font:1em Consolas,monospace;
}
canvas {
  display: block;
  box-shadow: 0 0 60px -10px black;
  margin:0 auto;
  cursor:crosshair;
}
#coord{
  display: block;
  order:2;
}


@media screen and (max-height:480px) {
  body {
    display: block;
    text-align: center;
  }
}
              
            
!

JS

              
                // Maximum number of iterations for each point on the complex plane
const MAX_ITERATIONS = 32;

let cnv_mandel;
let cnv_julia;
let prev_ca = 0, prev_cb = 0; 

let elem_coord = document.getElementById("coord");

function setup() {
  pixelDensity(1);
  createCanvas(320,480);
  
  cnv_mandel = createGraphics(320, 240);
  cnv_julia = createGraphics(320, 240);
  colorMode(HSB);
  
  updateMandel();
  
}

function draw() {
  image(cnv_mandel,0,0);
  updateJulia();
  image(cnv_julia,0,height/2);
}
var zoom = 4;

// function mouseWheel(e) {
//   if (e.delta > 0) {
//     zoom *= 1.1;  
//   } else {
//     zoom /= 1.1;
//   }
  
// }

function updateJulia() {
   //var ca = lerp(prev_ca, map(mouseX, 0, cnv_julia.width, -2, 1),.3);//-0.70176;
   //var cb = lerp(prev_cb, map(mouseY%cnv_julia.height, 0, cnv_julia.height, -1, 1),.3);//-0.70176;
  let ca = map(mouseX, 0, cnv_julia.width, -2, 1);
  let cb = map(mouseY%cnv_julia.height, 0, cnv_julia.height, -1, 1);
  
  prev_ca = ca; 
  prev_cb = cb;
  cnv_julia.background(255);

  elem_coord.innerHTML = ca.toFixed(4) + " + " + cb.toFixed(4) + "i";
  // Establish a range of values on the complex plane
  // A different range will allow us to "zoom" in or out on the fractal

  // It all starts with the width, try higher or lower values
  //float w = abs(sin(angle))*5;
  let w = zoom;
  let h = (w * cnv_julia.height) / cnv_julia.width;

  // Start at negative half the width and height
  let xmin = -w/2;
  let ymin = -h/2;

  // Make sure we can write to the pixels[] array.
  // Only need to do this once since we don't do any other drawing.
  cnv_julia.loadPixels();
  // x goes from xmin to xmax
  let xmax = xmin + w;
  // y goes from ymin to ymax
  let ymax = ymin + h;

  // Calculate amount we increment x,y for each pixel
  let dx = (xmax - xmin) / (cnv_julia.width);
  let dy = (ymax - ymin) / (cnv_julia.height);

  // Start y
  let y = ymin;
  for (let j = 0; j < cnv_julia.height; j++) {
    // Start x
    let x = xmin;
    for (let i = 0; i < cnv_julia.width; i++) {

      // Now we test, as we iterate z = z^2 + cm does z tend towards infinity?
      let a = x;
      let b = y;
      let n = 0;
      while (n < MAX_ITERATIONS) {
        let aa = a * a;
        let bb = b * b;
        // Infinity in our finite world is simple, let's just consider it 16
        if (aa + bb > 8.0) {
          break;  // Bail
        }
        let twoab = 2.0 * a * b;
        a = aa - bb + ca;
        b = twoab + cb;
        n++;
      }

      // We color each pixel based on how long it takes to get to infinity
      // If we never got there, let's pick the color black
      let pix = 4 * (i + j*width);
      
      if (n == MAX_ITERATIONS) {
        cnv_julia.pixels[pix] = 0;
        cnv_julia.pixels[pix+1] = 0;
        cnv_julia.pixels[pix+2] = 0;
        cnv_julia.pixels[pix+3] = 255;
      } else {
        // Gosh, we could make fancy colors here if we wanted
        let hu = ((n / MAX_ITERATIONS) * 360) % 360;
        let c = color(hu,100,Math.pow(n/MAX_ITERATIONS,.25)*100);
        
        cnv_julia.pixels[pix] = red(c); // color(hu, 100, 100);
        cnv_julia.pixels[pix+1] = green(c); // color(hu, 100, 100);
        cnv_julia.pixels[pix+2] = blue(c); // color(hu, 100, 100);
        cnv_julia.pixels[pix+3] = 255; // color(hu, 100, 100);
      }
      x += dx;
    }
    y += dy;
  }
  cnv_julia.updatePixels();
}

function  updateMandel() {
  cnv_mandel.background(255);

  // Start at negative half the width and height
  let xmin = -2;
  let ymin = -1;

  // Make sure we can write to the pixels[] array.
  // Only need to do this once since we don't do any other drawing.
  cnv_mandel.loadPixels();

  // x goes from xmin to xmax
  let xmax = 1;
  // y goes from ymin to ymax
  let ymax = 1;

  // Calculate amount we increment x,y for each pixel
  let dx = (xmax - xmin) / (cnv_mandel.width);
  let dy = (ymax - ymin) / (cnv_mandel.height);

  // Start y
  var y = ymin;
  for (let j = 0; j < cnv_mandel.height; j++) {
    // Start x
    let x = xmin;
    for (let i = 0; i < cnv_mandel.width; i++) {

      // Now we test, as we iterate z = z^2 + cm does z tend towards infinity?
      let a = x;
      let b = y;
      
      let ca = a;
      let cb = b;
      
      let n = 0;
      while (n < MAX_ITERATIONS) {
        let aa = a * a - b * b;
        let bb = 2 * a * b;
        a = aa + ca;
        b = bb + cb;
        if (a * a + b * b > 16) {
          break;
        }
        n++;
      }

      // We color each pixel based on how long it takes to get to infinity
      // If we never got there, let's pick the color black
      let pix = 4 * (i + j*cnv_mandel.width);
      
      if (n == MAX_ITERATIONS) {
        cnv_mandel.pixels[pix] = 0;
        cnv_mandel.pixels[pix+1] = 0;
        cnv_mandel.pixels[pix+2] = 0;
        cnv_mandel.pixels[pix+3] = 255;
      } else {
        // Gosh, we could make fancy colors here if we wanted
        let hu = ((n / MAX_ITERATIONS) * 360) % 360;
        let c = color(hu,100,Math.pow(n/MAX_ITERATIONS,.25)*100);
        
        cnv_mandel.pixels[pix] = red(c); // color(hu, 100, 100);
        cnv_mandel.pixels[pix+1] = green(c); // color(hu, 100, 100);
        cnv_mandel.pixels[pix+2] = blue(c); // color(hu, 100, 100);
        cnv_mandel.pixels[pix+3] = 255; // color(hu, 100, 100);
      }
      x += dx;
    }
    y += dy;
  }
  cnv_mandel.updatePixels();
}

              
            
!
999px

Console