HTML preprocessors can make writing HTML more powerful or convenient. For instance, Markdown is designed to be easier to write and read for text documents and you could write a loop in Pug.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. So you don't have access to higher-up elements like the <html>
tag. If you want to add classes there that can affect the whole document, this is the place to do it.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. If you need things in the <head>
of the document, put that code here.
The resource you are linking to is using the 'http' protocol, which may not work when the browser is using https.
CSS preprocessors help make authoring CSS easier. All of them offer things like variables and mixins to provide convenient abstractions.
It's a common practice to apply CSS to a page that styles elements such that they are consistent across all browsers. We offer two of the most popular choices: normalize.css and a reset. Or, choose Neither and nothing will be applied.
To get the best cross-browser support, it is a common practice to apply vendor prefixes to CSS properties and values that require them to work. For instance -webkit-
or -moz-
.
We offer two popular choices: Autoprefixer (which processes your CSS server-side) and -prefix-free (which applies prefixes via a script, client-side).
Any URLs added here will be added as <link>
s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.
You can apply CSS to your Pen from any stylesheet on the web. Just put a URL to it here and we'll apply it, in the order you have them, before the CSS in the Pen itself.
You can also link to another Pen here (use the .css
URL Extension) and we'll pull the CSS from that Pen and include it. If it's using a matching preprocessor, use the appropriate URL Extension and we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
JavaScript preprocessors can help make authoring JavaScript easier and more convenient.
Babel includes JSX processing.
Any URL's added here will be added as <script>
s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.
You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.
If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
Search for and use JavaScript packages from npm here. By selecting a package, an import
statement will be added to the top of the JavaScript editor for this package.
Using packages here is powered by Skypack, which makes packages from npm not only available on a CDN, but prepares them for native JavaScript ES6 import
usage.
All packages are different, so refer to their docs for how they work.
If you're using React / ReactDOM, make sure to turn on Babel for the JSX processing.
If active, Pens will autosave every 30 seconds after being saved once.
If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.
If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.
Visit your global Editor Settings.
body {
font-family: Arial, Helvetica, "Liberation Sans", FreeSans, sans-serif;
background-color: #000;
margin:0;
padding:0;
border-width:0;
}
"use strict";
window.addEventListener("load",function() {
const nbx = 7;
const nby = 7;
const nbz = 7;
const cubeSize = 0.4; // cubes centers are spaced by 1
let canv, ctx; // canvas and context : global variables (I know :( )
let maxx, maxy; // canvas sizes (in pixels)
let xc, yc; // canvas center;
let arCubes; // array of cubes
// shortcuts for Math.…
const mrandom = Math.random;
const mfloor = Math.floor;
const mround = Math.round;
const mceil = Math.ceil;
const mabs = Math.abs;
const mmin = Math.min;
const mmax = Math.max;
const mPI = Math.PI;
const mPIS2 = Math.PI / 2;
const m2PI = Math.PI * 2;
const msin = Math.sin;
const mcos = Math.cos;
const matan2 = Math.atan2;
const mtan = Math.tan;
const mhypot = Math.hypot;
const msqrt = Math.sqrt;
const rac3 = msqrt(3);
const rac3s2 = rac3 / 2;
const mPIS3 = Math.PI / 3;
let projxx;
let projxy;
let projyx;
let projyy;
let projzx;
let projzy;
// for animation
let click;
let buttOn; // button on
let xMouse, yMouse;
let display = false;
let redraw = false;
let pts;
let proj;
function Noise1DOneShot (period, min = 0, max = 1, random) {
/* returns a 1D single-shot noise generator.
the (optional) random function must return a value between 0 and 1
the returned function has no parameter, and will return a new number every tiime it is called.
If the random function provides reproductible values (and is not used elsewhere), this
one will return reproductible values too.
period should be > 1. The bigger period is, the smoother output noise is
*/
random = random || Math.random;
let currx = random(); // start with random offset
let y0 = min + (max - min) * random(); // 'previous' value
let y1 = min + (max - min) * random(); // 'next' value
let dx = 1 / period;
return function() {
currx += dx;
if (currx > 1) {
currx -= 1;
y0 = y1;
y1 = min + (max - min) * random();
}
let z = (3 - 2 * currx) * currx * currx;
return z * y1 + (1 - z) * y0;
}
} // Noise1DOneShot
//-----------------------------------------------------------------------------
// cube defined by center
function Cube (xc, yc, zc, color) {
const cs2 = cubeSize / 2;
const x0 = xc - cs2;
const x1 = xc + cs2;
const y0 = yc - cs2;
const y1 = yc + cs2;
const z0 = zc - cs2;
const z1 = zc + cs2;
this.pts = [[x0, y0, z0],[x1, y0, z0],
[x0, y1, z0],[x1, y1, z0],
[x0, y0, z1],[x1, y0, z1],
[x0, y1, z1],[x1, y1, z1]];
this.color = color;
} // Cube
Cube.prototype.draw = function() {
ctx.strokeStyle = this.color;
ctx.lineWidth = 2;
let pscr = proj.projection(this.pts);
drawLine (0, 1);
drawLine (1, 3);
drawLine (3, 2);
drawLine (2, 0);
drawLine (4, 5);
drawLine (5, 7);
drawLine (7, 6);
drawLine (6, 4);
drawLine (0, 4);
drawLine (1, 5);
drawLine (3, 7);
drawLine (2, 6);
function drawLine (ind1, ind2) {
line (pscr[ind1], pscr[ind2]);
} // drawLine
} // Cube.prototype.draw
//-----------------------------------------------------------------------------
function line (p0, p1) {
ctx.beginPath();
ctx.moveTo (p0[0], p0[1]);
ctx.lineTo (p1[0], p1[1]);
// ctx.lineWidth = 2; use current value
// ctx.strokeStyle = color; use current value
ctx.stroke();
} // line
//-----------------------------------------------------------------------------
function createTranslation (depl) {
const [dx, dy, dz] = depl;
function apply (p) {
// p may be a single point or an array of points
// but not an array of arrays of points
if (p[0].length !== 3) // single point
return [p[0] + dx, p[1] + dy, p[2] + dz];
else // array of points
return p.map(pt => [pt[0] + dx, pt[1] + dy, pt[2] + dz]);
} //
return {
dx: dx, dy: dy, dz: dz,
apply: apply
}
} // createTranslation
//-----------------------------------------------------------------------------
function createRotation (thx, thy) {
// rotate around y axis, then around x axis
const sx = msin(thx);
const cx = mcos(thx);
const sy = msin(thy);
const cy = mcos(thy);
const a10 = sx * sy;
const a12 = - sx * cy;
const a20 = - sy * cx;
const a22 = cx * cy;
function apply (p) {
// p may be a single point or an array of points
// but not an array og arrays of points
if (p[0].length !== 3) { // single point
let [x, y, z] = p;
return [ cy * x + sy * z,
a10 * x + cx * y + a12 * z,
a20 * x + sx * y + a22 * z];
} else { // array of points
return p.map(pt => {
let [x, y, z] = pt;
return [ cy * x + sy * z,
a10 * x + cx * y + a12 * z,
a20 * x + sx * y + a22 * z];
});
}
} //
return {
thx: thx, thy: thy,
apply: apply
}
} // createTranslation
//-----------------------------------------------------------------------------
function createPerspective (D, a, th, resx, resy) {
/* D : position of the observer's along the z axis (x = 0, y = 0)
D (should be positive, the observer looking towards (0, 0, 0) and negative direction of z)
a distance from the observer to the projection screen
th (angle of the width of the screen seen by the observer
resx, resy : number of pixels of the screen
*/
const resx2 = resx / 2;
const resy2 = resy / 2;
const th2 = th / 2; // for easier calculations
const b = a * mtan(th2);
const proj = a * resx2 / b;
function projection (spaceCoords) {
// spaceCoords may be a single point or an array of points
if (spaceCoords[0].length !== 3) // single point
return [spaceCoords[0] / (D - spaceCoords[2]) * proj + resx2,
- spaceCoords[1] / (D - spaceCoords[2]) * proj + resy2];
else // array of points
return spaceCoords.map(pt => [pt[0] / (D - pt[2]) * proj + resx2,
- pt[1] / (D - pt[2]) * proj + resy2]);
}
return {
D: D, a: a, th: th, resx: resx, resy: resy,
projection: projection
}
} // createPerspective
//-----------------------------------------------------------------------------
function createPerspective2 (pcam, a, th, resx, resy) {
/* pcam : array of 3 coordinates, position of the camera
still looking towards (0, 0, 0)
a distance from the observer to the projection screen
th (angle of the width of the screen seen by the observer
resx, resy : number of pixels of the screen
*/
const resx2 = resx / 2;
const resy2 = resy / 2;
const th2 = th / 2; // for easier calculations
const b = a * mtan(th2);
const proj = a * resx2 / b;
const D = mhypot(...pcam);
const X = pcam[0] / D;
const Y = pcam[1] / D;
const Z = pcam[2] / D;
const m11 = msqrt(1 - Y * Y); // Cx /!\ Y= + / - 1 => Cx = 0
const m00 = Z / m11; // Cy
const m02 = - X / m11; // -Sy
const m10 = Y * m02; // -Y.Sy
const m12 = -Y * m00; // -Y.Cy
const m20 = X;
const m21 = Y;
const m22 = Z;
function rotatePoint (point) {
// rotation for camera position
return [m00 * point[0] + m02 * point[2],
m10 * point[0] + m11 * point[1] + m12 * point[2],
m20 * point[0] + m21 * point[1] + m22 * point[2]];
} // rotatePoint
function pointToScreen (point) {
// projection on canvas
return [point[0] / (D - point[2]) * proj + resx2,
- point[1] / (D - point[2]) * proj + resy2];
} // pointToScreen
function projection (spaceCoords) {
// spaceCoords may be a single point or an array of points
if (spaceCoords[0].length !== 3) // single point
return pointToScreen(rotatePoint(spaceCoords));
else // array of points
return spaceCoords.map(pt => pointToScreen(rotatePoint(pt)));
}
return {
pcam: pcam,
D: D, a: a, th: th, resx: resx, resy: resy,
projection: projection
}
} // createPerspective2
//-----------------------------------------------------------------------------
function createPerspective3 (pcam, pLookAt, a, th, resx, resy) {
/* pcam : array of 3 coordinates, position of the camera
pLookAt : point the camera is looking at
a distance from the observer to the projection screen
th (angle of the width of the screen seen by the observer
resx, resy : number of pixels of the screen
*/
const resx2 = resx / 2;
const resy2 = resy / 2;
const th2 = th / 2; // for easier calculations
const b = a * mtan(th2);
const proj = a * resx2 / b;
const transl = createTranslation([-pLookAt[0], -pLookAt[1], -pLookAt[2]]);
const redpcam = transl.apply(pcam);
const D = mhypot(redpcam[0], redpcam[1], redpcam[2]);
const X = redpcam[0] / D;
const Y = redpcam[1] / D;
const Z = redpcam[2] / D;
const m11 = msqrt(1 - Y * Y); // Cx /!\ Y= + / - 1 => Cx = 0
const m00 = Z / m11; // Cy
const m02 = - X / m11; // -Sy
const m10 = Y * m02; // -Y.Sy
const m12 = -Y * m00; // -Y.Cy
const m20 = X;
const m21 = Y;
const m22 = Z;
function rotatePoint (point) {
// rotation for camera position
return [m00 * point[0] + m02 * point[2],
m10 * point[0] + m11 * point[1] + m12 * point[2],
m20 * point[0] + m21 * point[1] + m22 * point[2]];
} // rotatePoint
function pointToScreen (point) {
// projection on canvas
return [point[0] / (D - point[2]) * proj + resx2,
- point[1] / (D - point[2]) * proj + resy2];
} // pointToScreen
function projection (spaceCoords) {
// spaceCoords may be a single point or an array of points
if (spaceCoords[0].length !== 3) // single point
return pointToScreen(rotatePoint(transl.apply(spaceCoords)));
else // array of points
return spaceCoords.map(pt => pointToScreen(rotatePoint(transl.apply(pt))));
}
return {
pcam: pcam,
pLookAt : pLookAt,
D: D, a: a, th: th, resx: resx, resy: resy,
projection: projection
}
} // createPerspective3
//-----------------------------------------------------------------------------
// returns false if nothing can be done, true if drawing done
function startOver() {
display = false;
// canvas dimensions
maxx = window.innerWidth;
maxy = window.innerHeight;
canv.style.left = ((window.innerWidth ) - maxx) / 2 + 'px';
canv.style.top = ((window.innerHeight ) - maxy) / 2 + 'px';
ctx.canvas.width = maxx;
ctx.canvas.height = maxy;
ctx.lineCap = 'round'; // placed here because reset when canvas resized
if (maxx < 100) return false;
xc = maxx / 2;
yc = maxy / 2;
// create cubes
arCubes = [];
for (let kz = 0; kz < nbz; ++kz) {
let z = kz - (nbz - 1) / 2;
let blue = 0.2 + 0.8 * kz / (nbz - 1);
for (let ky = 0; ky < nby; ++ky) {
let y = ky - (nby - 1) / 2;
let green = 0.2 + 0.8 * ky / (nby - 1);
for (let kx = 0; kx < nbx; ++kx) {
let x = kx - (nbx - 1) / 2;
let red = 0.2 + 0.8 * kx / (nbx - 1);
arCubes.push(new Cube(x, y ,z,`rgb(${255 * red},${255 * green},${255 * blue}`));
} // kx
} // ky
} // kz
return true; // ok
} // startOver
//------------------------------------------------------------------------
let animate;
{
let animState = 0;
let theta = 0;
let deplR, deply;
let deplfy;
function drawLine (ind1, ind2, color) {
line (pscr[ind1], pscr[ind2],color);
}
animate = function(tStamp) {
let radius;
window.requestAnimationFrame(animate);
switch (animState) {
case 0 :
if (startOver()) {
deplR = Noise1DOneShot(350, 0.8 * nbz , 2 * nbz);
deply = Noise1DOneShot(415, -nby / 2 , nby / 2);
deplfy = Noise1DOneShot(420, -nby / 2 - 1, nby / 2 + 1);
++animState;
}
break;
case 1 :
ctx.clearRect (0, 0, maxx, maxy);
theta = (theta + 0.002) % m2PI;
radius = deplR();
proj = createPerspective3([radius * msin(theta),deply(),radius * mcos(theta)],[0,deplfy(),0], 0.5, 0.5, maxx, maxy);
arCubes.forEach(cube => cube.draw());
} // switch
} // animate
} // scope for animate
//------------------------------------------------------------------------
//------------------------------------------------------------------------
// beginning of execution
{
canv = document.createElement('canvas');
canv.style.position="absolute";
document.body.appendChild(canv);
ctx = canv.getContext('2d');
} // canvas creation
window.requestAnimationFrame(animate);
click = true; // to run startOver
}); // window load listener
Also see: Tab Triggers