Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URLs added here will be added as <link>s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Auto Save

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                
              
            
!

CSS

              
                body {
  font-family: Arial, Helvetica, "Liberation Sans", FreeSans, sans-serif;
  background-color: #000;
  margin:0;
  padding:0;
  border-width:0;
}

              
            
!

JS

              
                "use strict";

window.addEventListener("load",function() {


  const nbx = 7;
  const nby = 7;
  const nbz = 7;
  const cubeSize = 0.4; // cubes centers are spaced by 1

  let canv, ctx;   // canvas and context : global variables (I know :( )
  let maxx, maxy;  // canvas sizes (in pixels)
  let xc, yc;      // canvas center;

  let arCubes; // array of cubes

// shortcuts for Math.…

  const mrandom = Math.random;
  const mfloor = Math.floor;
  const mround = Math.round;
  const mceil = Math.ceil;
  const mabs = Math.abs;
  const mmin = Math.min;
  const mmax = Math.max;

  const mPI = Math.PI;
  const mPIS2 = Math.PI / 2;
  const m2PI = Math.PI * 2;
  const msin = Math.sin;
  const mcos = Math.cos;
  const matan2 = Math.atan2;
  const mtan = Math.tan;

  const mhypot = Math.hypot;
  const msqrt = Math.sqrt;

  const rac3   = msqrt(3);
  const rac3s2 = rac3 / 2;
  const mPIS3 = Math.PI / 3;

  let projxx;
  let projxy;

  let projyx;
  let projyy;

  let projzx;
  let projzy;

// for animation
  let click;
  let buttOn; // button on
  let xMouse, yMouse;
  let display = false;
  let redraw = false;
  let pts;
  let proj;


function Noise1DOneShot (period, min = 0, max = 1, random) {
/* returns a 1D single-shot noise generator.
   the (optional) random function must return a value between 0 and 1
  the returned function has no parameter, and will return a new number every tiime it is called.
  If the random function provides reproductible values (and is not used elsewhere), this
  one will return reproductible values too.
  period should be > 1. The bigger period is, the smoother output noise is
*/
  random = random || Math.random;
  let currx = random(); // start with random offset
  let y0 = min + (max - min) * random(); // 'previous' value
  let y1 = min + (max - min) * random(); // 'next' value
  let dx = 1 / period;

  return function() {
    currx += dx;
    if (currx > 1) {
      currx -= 1;
      y0 = y1;
      y1 = min + (max - min) * random();
    }
    let z = (3 - 2 * currx) * currx * currx;
    return z * y1 + (1 - z) * y0;
  }
} // Noise1DOneShot


//-----------------------------------------------------------------------------
// cube defined by center

function Cube (xc, yc, zc, color) {
  const cs2 = cubeSize / 2;
  const x0 = xc - cs2;
  const x1 = xc + cs2;
  const y0 = yc - cs2;
  const y1 = yc + cs2;
  const z0 = zc - cs2;
  const z1 = zc + cs2;

  this.pts = [[x0, y0, z0],[x1, y0, z0],
              [x0, y1, z0],[x1, y1, z0],
              [x0, y0, z1],[x1, y0, z1],
              [x0, y1, z1],[x1, y1, z1]];
  this.color = color;
} // Cube

Cube.prototype.draw = function() {

  ctx.strokeStyle = this.color;
  ctx.lineWidth = 2;
  let pscr = proj.projection(this.pts);
  drawLine (0, 1);
  drawLine (1, 3);
  drawLine (3, 2);
  drawLine (2, 0);
  drawLine (4, 5);
  drawLine (5, 7);
  drawLine (7, 6);
  drawLine (6, 4);
  drawLine (0, 4);
  drawLine (1, 5);
  drawLine (3, 7);
  drawLine (2, 6);

  function drawLine (ind1, ind2) {
    line (pscr[ind1], pscr[ind2]);
  } // drawLine
} // Cube.prototype.draw

//-----------------------------------------------------------------------------

function line (p0, p1) {
  ctx.beginPath();
  ctx.moveTo (p0[0], p0[1]);
  ctx.lineTo (p1[0], p1[1]);
//  ctx.lineWidth = 2; use current value
//  ctx.strokeStyle = color; use current value
  ctx.stroke();

} // line

//-----------------------------------------------------------------------------

function createTranslation (depl) {

  const [dx, dy, dz] = depl;

  function apply (p) {
  // p may be a single point or an array of points
  // but not an array of arrays of points

    if (p[0].length !== 3)                     // single point
      return [p[0] + dx, p[1] + dy, p[2] + dz];
    else                                      // array of points
      return p.map(pt => [pt[0] + dx, pt[1] + dy, pt[2] + dz]);
  } //
  return {
    dx: dx, dy: dy, dz: dz,
    apply: apply
  }
} // createTranslation

//-----------------------------------------------------------------------------

function createRotation (thx, thy) {

// rotate around y axis, then around x axis

  const sx = msin(thx);
  const cx = mcos(thx);
  const sy = msin(thy);
  const cy = mcos(thy);
  const a10 = sx * sy;
  const a12 = - sx * cy;
  const a20 = - sy * cx;
  const a22 = cx * cy;

  function apply (p) {
  // p may be a single point or an array of points
  // but not an array og arrays of points

    if (p[0].length !== 3) {                    // single point
        let [x, y, z] = p;
        return [ cy * x +           sy * z,
                a10 * x + cx * y + a12 * z,
                a20 * x + sx * y + a22 * z];
    } else {                                     // array of points
      return p.map(pt => {
        let [x, y, z] = pt;
        return [ cy * x +           sy * z,
                a10 * x + cx * y + a12 * z,
                a20 * x + sx * y + a22 * z];
      });
    }
  } //
  return {
    thx: thx, thy: thy,
    apply: apply
  }
} // createTranslation

//-----------------------------------------------------------------------------

function createPerspective (D, a, th, resx, resy) {
/* D : position of the observer's along the z axis (x = 0, y = 0)
  D (should be positive, the observer looking towards (0, 0, 0) and negative direction of z)
a distance from the observer to the projection screen
th (angle of the width of the screen seen by the observer
resx, resy : number of pixels of the screen
*/
  const resx2 = resx / 2;
  const resy2 = resy / 2;
  const th2 = th / 2; // for easier calculations
  const b = a * mtan(th2);
  const proj = a * resx2 / b;

  function projection (spaceCoords) {
  // spaceCoords may be a single point or an array of points

    if (spaceCoords[0].length !== 3)             // single point
      return [spaceCoords[0] / (D - spaceCoords[2]) * proj + resx2,
             - spaceCoords[1] / (D - spaceCoords[2]) * proj + resy2];
    else                     // array of points
      return spaceCoords.map(pt => [pt[0] / (D - pt[2]) * proj + resx2,
                                   - pt[1] / (D - pt[2]) * proj + resy2]);
  }
  return {
    D: D, a: a, th: th, resx: resx, resy: resy,
    projection: projection
  }
} // createPerspective

//-----------------------------------------------------------------------------

function createPerspective2 (pcam, a, th, resx, resy) {
/* pcam : array of 3 coordinates, position of the camera
  still looking towards (0, 0, 0)
a distance from the observer to the projection screen
th (angle of the width of the screen seen by the observer
resx, resy : number of pixels of the screen
*/
  const resx2 = resx / 2;
  const resy2 = resy / 2;
  const th2 = th / 2; // for easier calculations
  const b = a * mtan(th2);
  const proj = a * resx2 / b;
  const D = mhypot(...pcam);
  const X = pcam[0] / D;
  const Y = pcam[1] / D;
  const Z = pcam[2] / D;
  const m11 = msqrt(1 - Y * Y); // Cx /!\ Y= + / - 1 => Cx = 0
  const m00 = Z / m11;  // Cy
  const m02 = - X / m11;  // -Sy
  const m10 = Y * m02; // -Y.Sy
  const m12 = -Y * m00; // -Y.Cy
  const m20 = X;
  const m21 = Y;
  const m22 = Z;

  function rotatePoint (point) {
// rotation for camera position
    return [m00 * point[0] + m02 * point[2],
            m10 * point[0] + m11 * point[1] + m12 * point[2],
            m20 * point[0] + m21 * point[1] + m22 * point[2]];
  } // rotatePoint

  function pointToScreen (point) {
// projection on canvas
      return [point[0] / (D - point[2]) * proj + resx2,
             - point[1] / (D - point[2]) * proj + resy2];
  } // pointToScreen

  function projection (spaceCoords) {

  // spaceCoords may be a single point or an array of points

    if (spaceCoords[0].length !== 3)             // single point
      return pointToScreen(rotatePoint(spaceCoords));
    else                     // array of points
      return spaceCoords.map(pt => pointToScreen(rotatePoint(pt)));
  }

  return {
    pcam: pcam,
    D: D, a: a, th: th, resx: resx, resy: resy,
    projection: projection
  }
} // createPerspective2

//-----------------------------------------------------------------------------

function createPerspective3 (pcam, pLookAt, a, th, resx, resy) {
/* pcam : array of 3 coordinates, position of the camera
  pLookAt : point the camera is looking at
a distance from the observer to the projection screen
th (angle of the width of the screen seen by the observer
resx, resy : number of pixels of the screen
*/
  const resx2 = resx / 2;
  const resy2 = resy / 2;
  const th2 = th / 2; // for easier calculations
  const b = a * mtan(th2);
  const proj = a * resx2 / b;
  const transl = createTranslation([-pLookAt[0], -pLookAt[1], -pLookAt[2]]);

  const redpcam = transl.apply(pcam);
  const D = mhypot(redpcam[0], redpcam[1], redpcam[2]);
  const X = redpcam[0] / D;
  const Y = redpcam[1] / D;
  const Z = redpcam[2] / D;
  const m11 = msqrt(1 - Y * Y); // Cx /!\ Y= + / - 1 => Cx = 0
  const m00 = Z / m11;  // Cy
  const m02 = - X / m11;  // -Sy
  const m10 = Y * m02; // -Y.Sy
  const m12 = -Y * m00; // -Y.Cy
  const m20 = X;
  const m21 = Y;
  const m22 = Z;

  function rotatePoint (point) {
// rotation for camera position
    return [m00 * point[0] + m02 * point[2],
            m10 * point[0] + m11 * point[1] + m12 * point[2],
            m20 * point[0] + m21 * point[1] + m22 * point[2]];
  } // rotatePoint

  function pointToScreen (point) {
// projection on canvas
      return [point[0] / (D - point[2]) * proj + resx2,
             - point[1] / (D - point[2]) * proj + resy2];
  } // pointToScreen

  function projection (spaceCoords) {

  // spaceCoords may be a single point or an array of points
    if (spaceCoords[0].length !== 3)             // single point
      return pointToScreen(rotatePoint(transl.apply(spaceCoords)));
    else                     // array of points
      return spaceCoords.map(pt => pointToScreen(rotatePoint(transl.apply(pt))));
  }

  return {
    pcam: pcam,
    pLookAt : pLookAt,
    D: D, a: a, th: th, resx: resx, resy: resy,
    projection: projection
  }
} // createPerspective3

//-----------------------------------------------------------------------------
// returns false if nothing can be done, true if drawing done

function startOver() {

  display = false;
// canvas dimensions

  maxx = window.innerWidth;
  maxy = window.innerHeight;

  canv.style.left = ((window.innerWidth ) - maxx) / 2 + 'px';
  canv.style.top = ((window.innerHeight ) - maxy) / 2 + 'px';

  ctx.canvas.width = maxx;
  ctx.canvas.height = maxy;
  ctx.lineCap = 'round';   // placed here because reset when canvas resized

  if (maxx < 100) return false;
  xc = maxx / 2;
  yc = maxy / 2;

// create cubes
  arCubes = [];
  for (let kz = 0; kz < nbz; ++kz) {
    let z = kz - (nbz - 1) / 2;
    let blue = 0.2 + 0.8 * kz / (nbz - 1);
    for (let ky = 0; ky < nby; ++ky) {
      let y = ky - (nby - 1) / 2;
      let green = 0.2 + 0.8 * ky / (nby - 1);
      for (let kx = 0; kx < nbx; ++kx) {
        let x = kx - (nbx - 1) / 2;
        let red = 0.2 + 0.8 * kx / (nbx - 1);
        arCubes.push(new Cube(x, y ,z,`rgb(${255 * red},${255 * green},${255 * blue}`));
      } // kx
    } // ky
  } // kz
  return true; // ok

} // startOver


//------------------------------------------------------------------------
let animate;
{
  let animState = 0;

  let theta = 0;
  let deplR, deply;
  let deplfy;

  function drawLine (ind1, ind2, color) {
    line (pscr[ind1], pscr[ind2],color);
  }

  animate = function(tStamp) {
    let radius;
    window.requestAnimationFrame(animate);

    switch (animState) {
      case 0 :
        if (startOver()) {
          deplR = Noise1DOneShot(350, 0.8 * nbz , 2 * nbz);
          deply = Noise1DOneShot(415, -nby / 2 , nby / 2);
          deplfy = Noise1DOneShot(420, -nby / 2 - 1, nby / 2 + 1);
          ++animState;
        }

        break;
      case 1 :
        ctx.clearRect (0, 0, maxx, maxy);
        theta = (theta + 0.002) % m2PI;
        radius = deplR();
        proj = createPerspective3([radius * msin(theta),deply(),radius * mcos(theta)],[0,deplfy(),0], 0.5, 0.5, maxx, maxy);
        arCubes.forEach(cube => cube.draw());

    } // switch
  } // animate
} // scope for animate
//------------------------------------------------------------------------
//------------------------------------------------------------------------
// beginning of execution

  {
    canv = document.createElement('canvas');
    canv.style.position="absolute";
    document.body.appendChild(canv);
    ctx = canv.getContext('2d');
  } // canvas creation

  window.requestAnimationFrame(animate);
  click = true; // to run startOver

}); // window load listener

              
            
!
999px

Console