HTML preprocessors can make writing HTML more powerful or convenient. For instance, Markdown is designed to be easier to write and read for text documents and you could write a loop in Pug.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. So you don't have access to higher-up elements like the <html>
tag. If you want to add classes there that can affect the whole document, this is the place to do it.
In CodePen, whatever you write in the HTML editor is what goes within the <body>
tags in a basic HTML5 template. If you need things in the <head>
of the document, put that code here.
The resource you are linking to is using the 'http' protocol, which may not work when the browser is using https.
CSS preprocessors help make authoring CSS easier. All of them offer things like variables and mixins to provide convenient abstractions.
It's a common practice to apply CSS to a page that styles elements such that they are consistent across all browsers. We offer two of the most popular choices: normalize.css and a reset. Or, choose Neither and nothing will be applied.
To get the best cross-browser support, it is a common practice to apply vendor prefixes to CSS properties and values that require them to work. For instance -webkit-
or -moz-
.
We offer two popular choices: Autoprefixer (which processes your CSS server-side) and -prefix-free (which applies prefixes via a script, client-side).
Any URLs added here will be added as <link>
s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.
You can apply CSS to your Pen from any stylesheet on the web. Just put a URL to it here and we'll apply it, in the order you have them, before the CSS in the Pen itself.
You can also link to another Pen here (use the .css
URL Extension) and we'll pull the CSS from that Pen and include it. If it's using a matching preprocessor, use the appropriate URL Extension and we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
JavaScript preprocessors can help make authoring JavaScript easier and more convenient.
Babel includes JSX processing.
Any URL's added here will be added as <script>
s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.
You can apply a script from anywhere on the web to your Pen. Just put a URL to it here and we'll add it, in the order you have them, before the JavaScript in the Pen itself.
If the script you link to has the file extension of a preprocessor, we'll attempt to process it before applying.
You can also link to another Pen here, and we'll pull the JavaScript from that Pen and include it. If it's using a matching preprocessor, we'll combine the code before preprocessing, so you can use the linked Pen as a true dependency.
Search for and use JavaScript packages from npm here. By selecting a package, an import
statement will be added to the top of the JavaScript editor for this package.
Using packages here is powered by esm.sh, which makes packages from npm not only available on a CDN, but prepares them for native JavaScript ESM usage.
All packages are different, so refer to their docs for how they work.
If you're using React / ReactDOM, make sure to turn on Babel for the JSX processing.
If active, Pens will autosave every 30 seconds after being saved once.
If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.
If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.
Visit your global Editor Settings.
<div id ="menu">
<p id="controls">close controls</p>
<div id="showhide">
<hr>
<p><input type="range" min=0 max=4 step=1 value=3 id="solid"> solid</p>
<p><input type="range" min=0 max=4 step=1 value=0 id="division"> face division</p>
<p><input type="range" min=0 max=0.9 step="any" value=0.8 id="hole"> hole</p>
<p><input type="range" min=0 max=1.2 step="any" value=0.5 id="color"> color</p>
<p><input type="range" min=0 max=4 step="any" value=1 id="speed"> speed</p>
<p>FPS : <span id="fps"></span></p>
</div> <!-- showhide -->
</div> <!-- menu -->
<p id="logo">Proudly powered by <img alt="" src=""></p>
body {
font-family: Arial, Helvetica, "Liberation Sans", FreeSans, sans-serif;
background-color: #000;
margin:0;
padding:0;
border-width:0;
cursor: pointer;
}
#menu {
font-size: 80%;
margin: 0;
padding: 5px;
position: absolute;
left: 5px;
top: 5px;
border-radius: 10px;
background-color: rgba(255, 255, 128, 0.9);
color: black;
z-index: 10
}
#menu.hidden #showhide{
display: none;
}
#controls {
margin-top: 0px;
margin-bottom: 0px;
}
#menu button {
margin-right: 5px;
margin-left: 5px;
}
#logo {
margin: 0;
padding: 0;
z-index: 100;
color: #fff;
position: absolute;
bottom: 5px;
right: 5px;
}
"use strict";
window.addEventListener("load",function() {
const rotSpeed = 0.5 / 1000; // radians / ms
let canv, ctx; // canvas and context
let maxx, maxy; // canvas dimensions
let perspective, solids, solid;
let dRot1, dRot2;
let xc, yc;
let ang1 = 0, ang2 = 0;
let lightDir;
let globRot = [1,0,0, 0,1,0, 0,0,1]; // global rotation matrix
// for animation
let ui, uiv;
let events, mouseEvents;
// shortcuts for Math.
const mrandom = Math.random;
const mfloor = Math.floor;
const mround = Math.round;
const mceil = Math.ceil;
const mabs = Math.abs;
const mmin = Math.min;
const mmax = Math.max;
const mPI = Math.PI;
const mPIS2 = Math.PI / 2;
const mPIS3 = Math.PI / 3;
const m2PI = Math.PI * 2;
const m2PIS3 = Math.PI * 2 / 3;
const msin = Math.sin;
const mcos = Math.cos;
const mtan = Math.tan;
const matan2 = Math.atan2;
const mhypot = Math.hypot;
const msqrt = Math.sqrt;
const rac3 = msqrt(3);
const rac3s2 = rac3 / 2;
//------------------------------------------------------------------------
function alea (mini, maxi) {
// random number in given range
if (typeof(maxi) == 'undefined') return mini * mrandom(); // range 0..mini
return mini + mrandom() * (maxi - mini); // range mini..maxi
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
function intAlea (mini, maxi) {
// random integer in given range (mini..maxi - 1 or 0..mini - 1)
//
if (typeof(maxi) == 'undefined') return mfloor(mini * mrandom()); // range 0..mini - 1
return mini + mfloor(mrandom() * (maxi - mini)); // range mini .. maxi - 1
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
function Noise1DOneShot (period, min = 0, max = 1, random) {
/* returns a 1D single-shot noise generator.
the (optional) random function must return a value between 0 and 1
the returned function has no parameter, and will return a new number every tiime it is called.
If the random function provides reproductible values (and is not used elsewhere), this
one will return reproductible values too.
period should be > 1. The bigger period is, the smoother output noise is
*/
random = random || Math.random;
let currx = random(); // start with random offset
let y0 = min + (max - min) * random(); // 'previous' value
let y1 = min + (max - min) * random(); // 'next' value
let dx = 1 / period;
return function() {
currx += dx;
if (currx > 1) {
currx -= 1;
y0 = y1;
y1 = min + (max - min) * random();
}
let z = (3 - 2 * currx) * currx * currx;
return z * y1 + (1 - z) * y0;
}
} // Noise1DOneShot
//------------------------------------------------------------------------
function isDirect2(p0, p1, p2) {
return ((p0[0] - p1[0]) * (p2[1] - p1[1]) - (p0[1] - p1[1]) * (p2[0] - p1[0])) <= 0;
}
//------------------------------------------------------------------------
function lerp2( p1, p2, alpha) {
const umalpha = 1 - alpha;
return [p1[0] * umalpha + p2[0] * alpha,
p1[1] * umalpha + p2[1] * alpha];
} // lerp2
//------------------------------------------------------------------------
const Ar3 = {
normalize : function(ar3) {
const lng = mhypot(...ar3); // hope this is != 0
return [ar3[0] / lng, ar3[1] / lng, ar3[2] / lng];
},
dotProduct : function(ar3a, ar3b) {
return ar3a[0] * ar3b[0] + ar3a[1] * ar3b[1] + ar3a[2] * ar3b[2];
},
lerp : function(ar3a, ar3b, alpha) {
const umalpha = 1 - alpha;
return [ar3a[0] * umalpha + ar3b[0] * alpha,
ar3a[1] * umalpha + ar3b[1] * alpha,
ar3a[2] * umalpha + ar3b[2] * alpha];
}
} //
//-----------------------------------------------------------------------------
/* matrices given a 9 elements array in order :
0 1 2
3 4 5
6 7 8
*/
function mat33Prod(mat1, mat2) {
return [mat1[0] * mat2[0] + mat1[1] * mat2[3] + mat1[2] * mat2[6],
mat1[0] * mat2[1] + mat1[1] * mat2[4] + mat1[2] * mat2[7],
mat1[0] * mat2[2] + mat1[1] * mat2[5] + mat1[2] * mat2[8],
mat1[3] * mat2[0] + mat1[4] * mat2[3] + mat1[5] * mat2[6],
mat1[3] * mat2[1] + mat1[4] * mat2[4] + mat1[5] * mat2[7],
mat1[3] * mat2[2] + mat1[4] * mat2[5] + mat1[5] * mat2[8],
mat1[6] * mat2[0] + mat1[7] * mat2[3] + mat1[8] * mat2[6],
mat1[6] * mat2[1] + mat1[7] * mat2[4] + mat1[8] * mat2[7],
mat1[6] * mat2[2] + mat1[7] * mat2[5] + mat1[8] * mat2[8]];
}
//-----------------------------------------------------------------------------
function createPerspective3 (pcam, th2, resx, resy) {
/* pcam : array of 3 coordinates, position of the camera
pLookAt : removed - always looking at (0,0,0)
th2 (tangent of half angle of the screen seen by the camera)
resx, resy : number of pixels of the screen
*/
const resx2 = resx / 2;
const resy2 = resy / 2;
const proj = resx2 / th2;
const D = mhypot(pcam[0], pcam[1], pcam[2]);
const X = pcam[0] / D;
const Y = pcam[1] / D;
const Z = pcam[2] / D;
const m11 = msqrt(1 - Y * Y); // Cx /!\ Y= + / - 1 => Cx = 0
const m00 = Z / m11; // Cy
const m02 = - X / m11; // -Sy
const m10 = Y * m02; // -Y.Sy
const m12 = -Y * m00; // -Y.Cy
const m20 = X;
const m21 = Y;
const m22 = Z;
function rotatePoint (point) {
// rotation for camera position
return [m00 * point[0] + m02 * point[2],
m10 * point[0] + m11 * point[1] + m12 * point[2],
m20 * point[0] + m21 * point[1] + m22 * point[2]];
} // rotatePoint
function pointToScreen (point) {
// projection on canvas
return [point[0] / (D - point[2]) * proj + resx2,
- point[1] / (D - point[2]) * proj + resy2];
} // pointToScreen
function projection (spaceCoords) {
// spaceCoords may be a single point or an array of points
if (spaceCoords[0].length !== 3) // single point
return pointToScreen(rotatePoint(spaceCoords));
else // array of points
return spaceCoords.map(pt => pointToScreen(rotatePoint(pt)));
}
return {
pcam: pcam,
D: D, th2: th2, resx: resx, resy: resy,
projection: projection
}
} // createPerspective3
//------------------------------------------------------------------------
function Solid (vertices, faces) {
/* takes a list a vertices and of faces
vertices are given as array of three coordinates of points on a (0,0,0)
centered sphere. This constructor will normalize the radius of this sphere to 1
faces are given as arrays of 3 or more points, all oriented turning clockwise
(as seen from the sphere center)
*/
if (vertices == undefined) return this;
this.vertices = vertices.map(point => Ar3.normalize(point));
this.faces = faces;
this.calcFaceNormals();
// prepare arrays with elements for all division levels
this.verticesD = [this.vertices];
this.facesD = [this.faces];
this.faceCentersD = [this.faceCenters];
this.faceNormalsD = [this.faceNormals];
for (let k = 1; k <= 4; ++k) {
this.divide();
this.verticesD.push(this.vertices);
this.facesD.push(this.faces);
this.faceCentersD.push(this.faceCenters);
this.faceNormalsD.push(this.faceNormals);
}
} // Solid
//------------------------------------------------------------------------
Solid.prototype.calcFaceNormals = function() {
// center of faces
// used (after normalization) as normals to faces
this.faceCenters = [];
this.faces.forEach (face =>{
this.faceCenters.push (
[face.reduce((sum, kvert) => sum + this.vertices[kvert][0], 0) / face.length,
face.reduce((sum, kvert) => sum + this.vertices[kvert][1], 0) / face.length,
face.reduce((sum, kvert) => sum + this.vertices[kvert][2], 0) / face.length]);
});
// normalize vectors
this.faceNormals = this.faceCenters.map(vec => Ar3.normalize(vec));
} //
//------------------------------------------------------------------------
Solid.prototype.divide = function() {
/* creates new vertices and faces arrays, by dividing existing faces into
smaller faces and projecting corresponding vertices on the sphere.
The resulting faces are no longer equilateral, but this gives nice results */
const nvertices = this.vertices.slice();
const nfaces = [];
let s0, s1, s2, s3, s4, s5;
this.faces.forEach((face,k) => {
if (this.faces[0].length == 3) {
this.divideTriangle(face, nvertices, nfaces); // if triangle
} else if (this.faces[0].length == 4) {
this.divideQuadrilateral(face, nvertices, nfaces, this.faceNormals[k]);
} else {
this.dividePentagon(face, nvertices, nfaces, this.faceNormals[k]);
}
});
this.vertices = nvertices;
this.faces = nfaces;
this.calcFaceNormals();
} // divide
//------------------------------------------------------------------------
Solid.prototype.divideTriangle = function(face, nvertices, nfaces) {
/* creates new vertices and faces arrays, by dividing existing faces into
4 smaller faces and projecting them on the sphere.
The resulting faces are no longer equilateral, but this gives nice results
not optimal : vertices at the center of edges are duplicated!
Benchmarking shows this does not really matter, all the time is taken by graphic functions
*/
const s0 = this.vertices[face[0]];
const s1 = this.vertices[face[1]];
const s2 = this.vertices[face[2]];
const s3 = Ar3.normalize(Ar3.lerp(s0, s1, 0.5));
const s4 = Ar3.normalize(Ar3.lerp(s1, s2, 0.5));
const s5 = Ar3.normalize(Ar3.lerp(s2, s0, 0.5));
const norgv = nvertices.length;
nvertices.push(s3, s4, s5);
nfaces.push([face[0], norgv, norgv + 2], // 0 3 5
[norgv, face[1], norgv + 1], // 3 1 4
[norgv + 2, norgv + 1, face[2]], // 5 4 2
[norgv + 1, norgv + 2, norgv]); // 4 5 3
} // divide
//------------------------------------------------------------------------
Solid.prototype.divideQuadrilateral = function(face, nvertices, nfaces, center) {
/* creates new vertices and faces arrays, by dividing existing faces into
4 smaller faces and projecting them on the sphere.
Uses the faceNormal vector, pointing to the center of the polygon, and already normalized
The resulting faces are triangles */
const s0 = this.vertices[face[0]];
const s1 = this.vertices[face[1]];
const s2 = this.vertices[face[2]];
const s3 = this.vertices[face[3]];
const norgv = nvertices.length;
nvertices.push(center);
nfaces.push([norgv, face[0], face[1]],
[norgv, face[1], face[2]],
[norgv, face[2], face[3]],
[norgv, face[3], face[0]]);
} // divide
//------------------------------------------------------------------------
Solid.prototype.dividePentagon = function(face, nvertices, nfaces, center) {
/* creates new vertices and faces arrays, by dividing existing faces into
5 smaller faces
Uses the faceNormal vector, pointing to the center of the polygon, and already normalized
The resulting faces are triangles */
const s0 = this.vertices[face[0]];
const s1 = this.vertices[face[1]];
const s2 = this.vertices[face[2]];
const s3 = this.vertices[face[3]];
const s4 = this.vertices[face[4]];
const norgv = nvertices.length;
nvertices.push(center);
nfaces.push([norgv, face[0], face[1]],
[norgv, face[1], face[2]],
[norgv, face[2], face[3]],
[norgv, face[3], face[4]],
[norgv, face[4], face[0]]);
} // divide
//------------------------------------------------------------------------
Solid.prototype.drawIt = function(dang1, dang2) {
let pface, alpha, hue;
// work with current division level
const vertices = this.verticesD[uiv.division];
const faces = this.facesD[uiv.division];
const faceNormals = this.faceNormalsD[uiv.division];
const faceCenters = this.faceCentersD[uiv.division];
const colors = this.colorsD[uiv.division];
// rotation matrix coefficients
let s1 = msin(dang1);
let c1 = mcos(dang1);
let s2 = msin(dang2);
let c2 = mcos(dang2);
let m00 = c2;
let m01 = s2 * s1;
let m02 = s2 * c1;
let m11 = c1;
let m12 = -s1;
let m20 = -s2;
let m21 = s1 * c2;
let m22 = c1 * c2;
// 3D rotation of solid
globRot = mat33Prod([m00,m01,m02, 0,m11,m12, m20,m21,m22], globRot);
let projPoints = vertices.map(globRotate);
let rotNormals = faceNormals.map(globRotate);
// perspective
projPoints = perspective.projection(projPoints);
let projCenters;
if (uiv.hole) {
let rotCenters = faceCenters.map(globRotate);
projCenters = perspective.projection(rotCenters);
}
// drawing
ctx.clearRect(0, 0, maxx, maxy);
// sort visible / hidden faces
let visible = [], hidden = [];
faces.forEach ((face, k) => {
pface = [projPoints[face[0]], projPoints[face[1]], projPoints[face[2]]];
if (isDirect2(pface[0], pface[1], pface[2])) {
hidden.push(k);
} else {
visible.push(k)
}
});
if (uiv.hole) { // display hidden faces first
alpha = uiv.hole;
hidden.forEach(khidden => {
const face = faces[khidden]
ctx.beginPath();
let p = projPoints[face[0]];
ctx.moveTo(p[0], p[1]);
for (let k = 1; k < face.length; ++k) {
p = projPoints[face[k]];
ctx.lineTo(p[0], p[1]);
}
ctx.closePath();
let cent = projCenters[khidden];
p = lerp2(cent, projPoints[face[0]], alpha);
ctx.moveTo(p[0], p[1]);
for (let k = 1; k < face.length; ++k) {
p = lerp2(cent, projPoints[face[k]], alpha);
ctx.lineTo(p[0], p[1]);
}
ctx.closePath();
let alphaLum = mmax(0, (1 + Ar3.dotProduct(rotNormals[khidden], lightDir)) / 2 );
alphaLum = 1- alphaLum; // inverted for inside side
alphaLum *= alphaLum; // accentuate diff light / dark
hue = (uiv.color < 1) ? (360 * uiv.color) : colors[khidden];
ctx.fillStyle = `hsl(${hue},100%, ${10 + 25 * alphaLum}%)`;
ctx.fill("evenodd");
ctx.strokeStyle = "#000";
ctx.lineWidth = 0.1;
ctx.stroke();
});
}
// allways draw visible
alpha = uiv.hole;
visible.forEach(kvisible => {
const face = faces[kvisible]
ctx.beginPath();
let p = projPoints[face[0]];
ctx.moveTo(p[0], p[1]);
for (let k = 1; k < face.length; ++k) {
p = projPoints[face[k]];
ctx.lineTo(p[0], p[1]);
}
ctx.closePath();
if (uiv.hole) { // draw hole if any
let cent = projCenters[kvisible];
p = lerp2(cent, projPoints[face[0]], alpha);
ctx.moveTo(p[0], p[1]);
for (let k = 1; k < face.length; ++k) {
p = lerp2(cent, projPoints[face[k]], alpha);
ctx.lineTo(p[0], p[1]);
}
ctx.closePath();
}
let alphaLum = mmax(0, (1 + Ar3.dotProduct(rotNormals[kvisible], lightDir)) / 2 );
alphaLum *= alphaLum; // accentuate diff light / dark
hue = (uiv.color < 1) ? (360 * uiv.color) : colors[kvisible];
ctx.strokeStyle = ctx.fillStyle = `hsl(${hue},100%, ${20 + 50 * alphaLum}%)`;
ctx.fill("evenodd");
ctx.strokeStyle = '#fff';
ctx.lineWidth = 0.25;
ctx.stroke();
});
function globRotate(p) {
return [globRot[0] * p[0] + globRot[1] * p[1] + globRot[2] * p[2],
globRot[3] * p[0] + globRot[4] * p[1] + globRot[5] * p[2],
globRot[6] * p[0] + globRot[7] * p[1] + globRot[8] * p[2]];
}
} // drawIt
//------------------------------------------------------------------------
function Icosahedron() {
/* based on the fact that vertices of an icosahedron are on the surface of a cube.
It is easy to calculate the positions on a cube with faces at coordinates -1 and +1
*/
const nphi = (msqrt(5) - 1) / 2;
const vertices = [[1, 0, nphi], [1, 0, -nphi],
[0, -nphi, 1], [0, nphi, 1],
[-1, 0, -nphi], [-1, 0, nphi],
[0, nphi, -1], [0, -nphi, -1],
[nphi, 1, 0], [-nphi, 1, 0],
[-nphi, -1, 0], [nphi, -1, 0]];
const faces = [[0, 1, 8], [0, 11, 1],
[2, 0, 3], [2, 3, 5],
[4, 5, 9], [4, 10, 5],
[6, 1, 7], [6, 7, 4],
[8, 9, 3], [8, 6, 9],
[10, 7, 11], [10, 11, 2],
[0, 2, 11],
[0, 8, 3],
[1, 11, 7],
[1, 6, 8],
[3, 9, 5],
[2, 5, 10],
[4, 9, 6],
[4, 7, 10]
];
Solid.call(this, vertices, faces);
}
Icosahedron.prototype = new Solid();
Icosahedron.constructor = Icosahedron;
//------------------------------------------------------------------------
function Dodecahedron() {
/* based on the fact that vertices of an icosahedron are on the surface of a cube.
It is easy to calculate the positions on a cube with faces at coordinates -1 and +1
*/
const phi = (msqrt(5) + 1) / 2;
const phi1 = phi - 1;
const vertices = [ [phi, 0, phi1], [phi, 0, -phi1],
[phi1, phi, 0], [-phi1, phi, 0],
[-phi, 0, phi1], [-phi, 0, -phi1],
[-phi1, -phi, 0], [phi1,-phi, 0],
[0, phi1, phi],[0, -phi1, phi],
[0, phi1, -phi],[0, -phi1, -phi],
[1, 1, 1],[-1, 1, 1],
[-1, -1, 1],[1, -1, 1],
[1, 1, -1],[-1, 1, -1],
[-1, -1, -1],[1, -1, -1]];
const faces = [[0, 1, 16, 2, 12], [1, 0, 15, 7, 19],
[2, 3, 13, 8, 12], [3, 2, 16, 10, 17],
[5, 4, 13, 3, 17], [4, 5, 18, 6, 14],
[6, 7, 15, 9, 14], [7, 6, 18, 11, 19],
[8, 9, 15, 0, 12], [9, 8, 13, 4, 14],
[10, 11, 18, 5, 17], [11, 10, 16, 1, 19]];
Solid.call(this, vertices, faces);
}
Dodecahedron.prototype = new Solid();
Dodecahedron.constructor = Dodecahedron;
//------------------------------------------------------------------------
//------------------------------------------------------------------------
function Octahedron() {
const vertices = [[1, 0, 0], [-1, 0, 0],
[0, 1, 0], [0, -1, 0],
[0, 0, 1], [0, 0, -1]];
/* order of vertices matter !
*/
const faces = [[4, 0, 2], [1, 4, 2],
[5, 1, 2], [0, 5, 2],
[0, 4, 3], [4, 1, 3],
[1, 5, 3], [5, 0, 3]
];
Solid.call(this, vertices, faces);
}
Octahedron.prototype = new Solid();
Octahedron.constructor = Octahedron;
//------------------------------------------------------------------------
//------------------------------------------------------------------------
function Cube() {
const vertices = [[1, 1, 1], [1, -1, 1],
[1, -1, -1], [1, 1, -1],
[-1, 1, 1], [-1, -1, 1],
[-1, -1, -1], [-1, 1, -1]];
/* order of vertices matter !
*/
const faces = [[0, 1, 2, 3], [0, 3, 7, 4],
[6, 5, 4, 7], [6, 2, 1, 5],
[0, 4, 5, 1], [6, 7, 3, 2]
];
Solid.call(this, vertices, faces);
}
Cube.prototype = new Solid();
Cube.constructor = Cube;
//------------------------------------------------------------------------
//------------------------------------------------------------------------
function Tetrahedron() {
const R = msqrt(8) / 3;
const vertices = [[msqrt(3) / 2 * R, - 1 / 3, -R / 2],
[0, -1 / 3, R],
[-msqrt(3) / 2 * R, - 1 / 3, -R / 2],
[0, 1, 0]];
/* order of vertices matter !
*/
const faces = [[0, 1, 2], [1, 3, 2],
[3, 0, 2], [0, 3, 1]
];
Solid.call(this, vertices, faces);
}
Tetrahedron.prototype = new Solid();
Tetrahedron.constructor = Tetrahedron;
//------------------------------------------------------------------------
// User Interface (controls)
//------------------------------------------------------------------------
function toggleMenu() {
if (menu.classList.contains("hidden")) {
menu.classList.remove ("hidden");
this.innerHTML ="close controls";
} else {
menu.classList.add ("hidden");
this.innerHTML ="controls";
}
} // toggleMenu
//------------------------------------------------------------------------
function prepareUI() {
// toggle menu handler
document.querySelector("#controls").addEventListener("click", toggleMenu);
ui = {}; // User Interface HTML elements
uiv = {}; // User Interface values of controls
['solid', 'division', 'speed', 'color', 'hole', 'fps'].forEach(ctrlName => ui[ctrlName] = document.getElementById(ctrlName));
registerControl("solid", readUIInt, "input");
registerControl("division",readUIFloat,"input");
registerControl("hole",readUIFloat,"input");
registerControl("color",readUIFloat,"input");
registerControl("speed",readSpeed,"input");
readUI();
} // prepareUI
//------------------------------------------------------------------------
function readUI() {
if (ui.registered) {
for (const ctrl in ui.registered) ui.registered[ctrl].readF();
}
} // readUI
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
function registerControl (controlName, readFunction, changeEvent, changedFunction) {
/* provides simple way to associate controls with their read / update / changeEvent / changed functions
since many (but not all) controls work almost the same way */
/* changeEvent and changedEvent are optional */
const ctrl = ui[controlName];
ui.registered = ui.registered || [];
ui.registered.push(ctrl); // NEVER register a control twice !!!
ctrl.readF = readFunction;
if (changeEvent) {
ctrl.addEventListener(changeEvent, (event) => {
readFunction.call(ctrl);
if (changedFunction) changedFunction.call(ctrl,event);
});
}
} // registerControl
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
function readUIFloat() {
uiv[this.id] = parseFloat(this.value);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
function readUIInt(ctrl, event) {
uiv[this.id] = parseInt(this.value);
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
function readUICheck(ctrl, event) {
uiv[this.id] = this.checked;
}
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
function readSpeed() {
// non-linear law
const speed = parseFloat(ui.speed.value);
uiv.speed = Math.sign(speed) * Math.pow(mabs(speed), 1.5); // better than linear
}
//------------------------------------------------------------------------
//------------------------------------------------------------------------
let animate;
{ // scope for animate
let animState = 0;
let mouseState = 0;
let prevMouse;
let tPrev;
let fps = 0, tFps = 0;
const filtr = Math.exp(-1 / 20); // filter time constant = 20 frames
let tFiltr = performance.now();
animate = function(tStamp) {
let event, dth1, dth2;
if (tStamp > tFiltr) {
fps = fps * filtr + (1 - filtr) * 1000 / (tStamp - tFiltr);
if (tStamp - tFps > 500) { // do not refresh too often
ui.fps.innerHTML = mround(10 * fps) / 10;
tFps = tStamp;
}
}
tFiltr = tStamp;
window.requestAnimationFrame(animate);
// 1 - manage mouse movement
dth1 = dth2 = 0;
event = mouseEvents.shift();
if (event) {
switch (mouseState) {
case 0: // released, waiting for mousedown
if (event.event == "mousedown") {
prevMouse = event.param;
++mouseState;
}
break;
case 1 :
if (event.event == "mouseup") {
mouseState = 0; // stop moving
} else if (event.event == "mousemove") {
dth1 = (event.param.clientX - prevMouse.clientX) / maxx * 2;
dth2 = (event.param.clientY - prevMouse.clientY) / maxx * 2;
prevMouse = event.param;
}
break;
} // switch mouseState
} // if mouse event
// 2 - solid rotation
event = events.shift();
if (event && event.event == 'reset') animState = 0;
switch (animState) {
case 0 : startOver();
++animState;
tPrev = tStamp;
case 1 :
let dt = tStamp - tPrev;
tPrev = tStamp;
solids[uiv.solid].drawIt(dRot1() * dt * uiv.speed + dth2, dRot2() * dt * uiv.speed + dth1);
break;
case 2:
break;
} // switch
} // animate
} // scope for animate
//------------------------------------------------------------------------
//------------------------------------------------------------------------
function startOver() {
// canvas dimensions
maxx = window.innerWidth;
maxy = window.innerHeight;
xc = maxx / 2;
yc = maxy / 2;
canv.width = maxx;
canv.height = maxy;
ctx.lineJoin = 'round';
ctx.lineCap = 'round';
ctx.fillStyle = '#000';
ctx.fillRect(0, 0, maxx, maxy);
perspective = createPerspective3([0, 0, 5], 0.25 * maxx / mmin(maxx, maxy), maxx, maxy);
// pick random hues
solids.forEach(solid => {
solid.colorsD = solid.facesD.map(faces => faces.map(face => intAlea(360)));
});
return true;
} // startOver
//------------------------------------------------------------------------
function mouseDown (event) {
mouseEvents.push({event:'mousedown', param: event});
} // mouseDown
//------------------------------------------------------------------------
function lightFrom(event) {
const lRef = mmin(maxx, maxy) / 2;
const xRel = (event.clientX - maxx / 2) / lRef;
const yRel = (maxy / 2 - event.clientY) / lRef;
const max = (maxx * maxx + maxy * maxy) / lRef / lRef / 4;
lightDir = Ar3.normalize([xRel, yRel, msqrt(max - xRel * xRel - yRel * yRel + 0.01)]);
}
//------------------------------------------------------------------------
function mouseMove (event) {
// mouseMove 1 : light direction
lightFrom(event);
// mouseMove 2 : rotation
let ev = {event:'mousemove', param: event}
if (mouseEvents.length > 1 &&
mouseEvents[mouseEvents.length - 1].event == "mousemove") {
mouseEvents[mouseEvents.length - 1] = ev; // update last event if it was already a mousemove
} else {
mouseEvents.push(ev);
}
} // mouseMove
//------------------------------------------------------------------------
function mouseUp (event) {
mouseEvents.push({event:'mouseup', param: event});
} // mouseUp
//------------------------------------------------------------------------
function mouseLeave (event) {
mouseUp(event);
} // mouseLeave
//------------------------------------------------------------------------
function touchStart(event) {
if (event.touches.length != 1) return; // ignore if more than 1 touch
lightFrom(event.touches[0]);
mouseDown({clientX: event.touches[0].clientX, clientY: event.touches[0].clientY});
}
//------------------------------------------------------------------------
function touchMove(event) {
if (event.touches.length != 1) return; // ignore if more than 1 touch
mouseMove({clientX: event.touches[0].clientX, clientY: event.touches[0].clientY});
event.preventDefault();
}
//------------------------------------------------------------------------
//------------------------------------------------------------------------
// beginning of execution
{
canv = document.createElement('canvas');
canv.style.position="absolute";
document.body.appendChild(canv);
ctx = canv.getContext('2d');
} // création CANVAS
dRot1 = Noise1DOneShot(500,-rotSpeed, rotSpeed);
dRot2 = Noise1DOneShot(500,-rotSpeed, rotSpeed);
lightDir = Ar3.normalize([1, 1, 2]);
prepareUI();
solids = [new Tetrahedron(),
new Cube(),
new Octahedron(),
new Dodecahedron(),
new Icosahedron()];
canv.addEventListener('mousedown',mouseDown);
canv.addEventListener('mousemove',mouseMove);
canv.addEventListener('mouseup',mouseUp);
canv.addEventListener('mouseleave',mouseLeave);
canv.addEventListener('touchstart',touchStart);
canv.addEventListener('touchmove',touchMove);
canv.addEventListener('touchend',mouseUp);
canv.addEventListener('touchcancel',mouseUp);
canv.addEventListener('touchleave',mouseUp);
events = [{event:'reset'}];
mouseEvents = [];
requestAnimationFrame (animate);
console.log('The number of vertices in this list includes MANY duplicated vertices, except where div = 0. The actual number is significantly lower. The number of faces is correct.');
solids.forEach ((solid, ks) => {
solid.verticesD.forEach((vertices, kd) => {
console.log (`solid ${ks} div ${kd} vertices ${vertices.length} faces ${solid.facesD[kd].length}`);
})
})
}); // window load listener
Also see: Tab Triggers