Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URLs added here will be added as <link>s in order, and before the CSS in the editor. You can use the CSS from another Pen by using its URL and the proper URL extension.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Auto Save

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                <a target="_blank" href="//m.me/721170876">
  <canvas class="canvas" width="500" height="500"></canvas> 
</a>
              
            
!

CSS

              
                :root, body {
  background-color: #000;
  min-height: 100%;
}

a{width:100%;height:100%;}

canvas {
  position: absolute;
  top: 50%;
  left: 50%;
  transform: translate(-50%, -50%) translateZ(0) translate3d(0,0,0);
  filter:saturate(5) brightness(2) contrast(1.5);
  width:80vmin;
  max-width:100%;
  backface-visibility:hidden
  }

              
            
!

JS

              
                const cubeCanvas = document.querySelector(".canvas");
if (cubeCanvas){

const regl = createREGL({
  canvas: cubeCanvas,
  attributes: {
    antialias: true,
    alpha: false,
  },
});
const { mat4, mat3, vec3 } = glMatrix;
  
let tick;

const play = (action) => {
  if (!tick) {
    tick = regl.frame(action);
  }
};

const stop = () => {
  if (tick) {
    tick.cancel();
    tick = null;
  }
};

const Texture = (regl, src) => {
  const texture = regl.texture();

  const image = new Image();

  image.src = src;

  image.onload = function () {
    texture({
      data: image,
      flipY: true,
      min: "mipmap",
    });
  };

  return texture;
};

const emptyTexture = regl.texture();

const CONTENT_CONFIG = {
  translateX: 0,
  translateY: 0,
  translateZ: 0,
  rotation: 0,
  rotateX: 1,
  rotateY: 1,
  rotateZ: 1,
  scale: 1,
};

const contentDraw = regl({
  frag: `
    precision mediump float;
    #define GLSLIFY 1
    
    uniform vec2 u_resolution;
    uniform sampler2D u_texture;
    uniform int u_maskId;
    uniform int u_typeId;
    uniform sampler2D u_displacement;
    uniform sampler2D u_mask;
    uniform float u_tick;
    
    varying vec2 v_uv;
    
    const float PI2 = 6.283185307179586;
    
    const float PI = 3.141592653589793;
    const float PI2_0 = 6.28318530718;
    
    mat2 scale(vec2 value) {
      return mat2(value.x, 0.0, 0.0, value.y);
    }
    
    mat2 rotate2d(float value){
      return mat2(cos(value), -sin(value), sin(value), cos(value));
    }
    
    vec3 gradient1(vec2 st, float tick) {
      vec3 c1 = vec3(253.0/255.0, 142.0/255.0,  98.0/255.0);
      vec3 c2 = vec3(251.0/255.0,  83.0/255.0, 184.0/255.0);
      vec3 c3 = c2;
      vec3 c4 = vec3( 57.0/255.0,  15.0/255.0, 248.0/255.0);
    
      st.y = 1.0 - st.y;
    
      vec2 toCenter = vec2(0.55, 0.58) - st;
      float angle = atan(toCenter.y, toCenter.x) / PI;
    
      vec3 colorA = mix(c1, c2, smoothstep(0.0, 0.5, angle));
    
      st -= vec2(0.5);
      st *= scale(vec2(1.4));
      st *= rotate2d(-1.44);
      st += vec2(0.5);
    
      vec3 colorB = mix(c2, c3, smoothstep(0.3, 0.8, st.x));
      colorB = mix(colorB, c4, smoothstep(0.55, 1.0, st.x));
    
      return mix(colorA, colorB, smoothstep(0.28, 0.65, st.x));
    }
    
    vec3 gradient2(vec2 st, float tick) {
      vec3 c1 = vec3(1.0, 0.8, 0.2);
      vec3 c2 = vec3(0.92, 0.20, 0.14);
    
      st -= vec2(0.5);
      st *= scale(vec2(3.8));
      st *= rotate2d(tick * PI);
      st += vec2(0.5);
    
      return mix(c1, c2, st.x);
    }
    
    vec3 gradient3(vec2 st, float tick) {
      vec3 c1 = vec3(229.0/255.0, 255.0/255.0, 196.0/255.0);
      vec3 c2 = vec3(200.0/255.0, 255.0/255.0, 224.0/255.0);
      vec3 c3 = vec3(180.0/255.0, 255.0/255.0, 245.0/255.0);
      vec3 c4 = vec3(203.0/255.0, 223.0/255.0, 255.0/255.0);
      vec3 c5 = vec3(233.0/255.0, 201.0/255.0, 255.0/255.0);
    
      st -= vec2(0.5);
      st *= scale(vec2(1.2));
      st *= rotate2d(tick * (PI / 2.5));
      st += vec2(0.5);
    
      vec3 colorB = mix(c1, c2, smoothstep(0.0, 0.25, st.x));
      colorB = mix(colorB, c3, smoothstep(0.25, 0.5, st.x));
      colorB = mix(colorB, c4, smoothstep(0.5, 0.75, st.x));
      colorB = mix(colorB, c5, smoothstep(0.75, 1.0, st.x));
    
      return colorB;
    }
    
    vec3 gradients(int type, vec2 st, float tick) {
      if (type == 1) {
        return gradient1(st, tick);
      } else if (type == 2) {
        return gradient2(st, tick);
      } else if (type == 3) {
        return gradient3(st, tick);
      }
    }
    
    void main() {
      vec2 st = gl_FragCoord.xy / u_resolution;
    
      vec4 displacement = texture2D(u_displacement, st);
      
      vec2 direction = vec2(cos(displacement.r * PI2), sin(displacement.r * PI2));
      float length = displacement.g;
    
      vec2 newUv = v_uv;
    
      newUv.x += (length * 0.07) * direction.x;
      newUv.y += (length * 0.07) * direction.y;
    
      vec4 texture = texture2D(u_texture, newUv);
      float tick = u_tick * 0.009;
    
      vec3 color = gradients(u_typeId, v_uv, tick);
    
      texture.rgb = color + (texture.rgb * color);
    
      vec4 mask = texture2D(u_mask, st);
    
      int maskId = int(mask.r * 4.0 + mask.g * 2.0 + mask.b * 1.0);
    
      if (maskId == u_maskId) {
        gl_FragColor = vec4(texture.rgb, texture.a * mask.a);
      } else {
        discard;
      }
    }
  `,
  vert: `
    precision mediump float;
    #define GLSLIFY 1

    attribute vec3 a_position;
    attribute vec2 a_uv;

    uniform mat4 u_projection;
    uniform mat4 u_view;
    uniform mat4 u_world;

    varying vec2 v_uv;

    void main() {
      v_uv = a_uv;

      gl_Position = u_projection * u_view * u_world * vec4(a_position, 1);
    }
  `,
  attributes: {
    a_position: [
      [-1, -1, 0],
      [1, -1, 0],
      [1, 1, 0],
      [-1, 1, 0],
    ],
    a_uv: [
      [0, 0],
      [1, 0],
      [1, 1],
      [0, 1],
    ],
  },
  uniforms: {
    u_texture: regl.prop("texture"),
    u_typeId: regl.prop("typeId"),
    u_maskId: regl.prop("maskId"),
  },
  depth: {
    enable: true,
    mask: false,
    func: "less",
  },
  blend: {
    enable: true,
    func: {
      srcRGB: "src alpha",
      srcAlpha: 1,
      dstRGB: "one minus src alpha",
      dstAlpha: 1,
    },
    equation: {
      rgb: "add",
      alpha: "add",
    },
    color: [0, 0, 0, 0],
  },
  elements: [0, 1, 2, 0, 2, 3],
  count: 6,
});

const contentSetup = regl({
  context: {
    world: () => {
      const {
        translateX,
        translateY,
        translateZ,
        rotation,
        rotateX,
        rotateY,
        rotateZ,
        scale,
      } = CONTENT_CONFIG;

      const world = mat4.create();

      mat4.translate(world, world, [translateX, translateY, translateZ]);
      mat4.rotate(world, world, rotation, [rotateX, rotateY, rotateZ]);
      mat4.scale(world, world, [scale, scale, scale]);

      return world;
    },
    mask: (context, { mask }) => {
      return mask || emptyTexture;
    },
    displacement: (context, { displacement }) => {
      return displacement || emptyTexture;
    },
  },
  uniforms: {
    u_world: regl.context("world"),
    u_mask: regl.context("mask"),
    u_displacement: regl.context("displacement"),
    u_tick: regl.context("tick"),
  },
});

const content = (props) => {
  contentSetup(props, (context, { textures }) => {
    regl.clear({
      color: [0, 0, 0, 0],
      depth: 1,
    });

    contentDraw(textures);
  });
};

const ContentTypes = {
  GRADIENT: 1,
  RED: 2,
  BLUE: 3,
};

const emptyCube = regl.cube();

const CUBE_CONFIG = {
  translateX: 0,
  translateY: 0,
  translateZ: 0,
  rotation: 0,
  rotateX: 1,
  rotateY: 1,
  rotateZ: 1,
  scale: 1,
  borderWidth: 0.008,
  displacementLength: 0.028,
  reflectionOpacity: 0.3,
  scene: 3,
};

const cube = regl({
  frag: `
    precision mediump float;
    #define GLSLIFY 1
    
    uniform vec2 u_resolution;
    uniform int u_face;
    uniform int u_typeId;
    uniform sampler2D u_texture;
    uniform samplerCube u_reflection;
    uniform float u_tick;
    uniform float u_borderWidth;
    uniform float u_displacementLength;
    uniform float u_reflectionOpacity;
    uniform int u_scene;
    
    varying vec3 v_normal;
    varying vec3 v_center;
    varying vec3 v_point;
    varying vec2 v_uv;
    varying vec3 v_color;
    varying float v_depth;
    
    const float PI2 = 6.283185307179586;
    
    float borders(vec2 uv, float strokeWidth) {
      vec2 borderBottomLeft = smoothstep(vec2(0.0), vec2(strokeWidth), uv);

      vec2 borderTopRight = smoothstep(vec2(0.0), vec2(strokeWidth), 1.0 - uv);
    
      return 1.0 - borderBottomLeft.x * borderBottomLeft.y * borderTopRight.x * borderTopRight.y;
    }
    
    const float PI2_0 = 6.28318530718;
    
    vec4 radialRainbow(vec2 st, float tick) {
      vec2 toCenter = vec2(0.5) - st;
      float angle = mod((atan(toCenter.y, toCenter.x) / PI2_0) + 0.5 + sin(tick * 0.002), 1.0);
    
      // colors
      vec4 c1 = vec4(229.0/255.0, 255.0/255.0, 196.0/255.0, 1.0);
      vec4 c2 = vec4(200.0/255.0, 255.0/255.0, 224.0/255.0, 1.0);
      vec4 c3 = vec4(180.0/255.0, 255.0/255.0, 245.0/255.0, 1.0);
      vec4 c4 = vec4(203.0/255.0, 223.0/255.0, 255.0/255.0, 1.0);
      vec4 c5 = vec4(233.0/255.0, 201.0/255.0, 255.0/255.0, 1.0);
      // vec4 a = vec4(0.43, 0.48, 0.95, 1.0);
      // vec4 b = vec4(0.94, 0.79, 0.41, 1.0);
      // // vec4 b = vec4(0.49, 0.88, 1.00, 1.0);
      // vec4 c = vec4(0.68, 0.29, 0.68, 1.0);
      // vec4 d = vec4(0.94, 0.79, 0.41, 1.0);
      // vec4 e = vec4(0.43, 0.48, 0.95, 1.0);
    
      float step = 1.0 / 10.0;
    
      vec4 color = c1;
    
      color = mix(color, c2, smoothstep(step * 1.0, step * 2.0, angle));
      color = mix(color, c1, smoothstep(step * 2.0, step * 3.0, angle));
      color = mix(color, c2, smoothstep(step * 3.0, step * 4.0, angle));
      color = mix(color, c3, smoothstep(step * 4.0, step * 5.0, angle));
      color = mix(color, c4, smoothstep(step * 5.0, step * 6.0, angle));
      color = mix(color, c3, smoothstep(step * 6.0, step * 7.0, angle));
      color = mix(color, c4, smoothstep(step * 7.0, step * 8.0, angle));
      color = mix(color, c5, smoothstep(step * 8.0, step * 9.0, angle));
      color = mix(color, c1, smoothstep(step * 9.0, step * 10.0, angle));
    
      return color;
    }
    
    mat2 scale(vec2 value){
      return mat2(value.x, 0.0, 0.0, value.y);
    }
    
    mat2 rotate2d(float value){
      return mat2(cos(value), -sin(value), sin(value), cos(value));
    }
    
    vec2 rotateUV(vec2 uv, float rotation) {
      float mid = 0.5;
      return vec2(
        cos(rotation) * (uv.x - mid) + sin(rotation) * (uv.y - mid) + mid,
        cos(rotation) * (uv.y - mid) - sin(rotation) * (uv.x - mid) + mid
      );
    }
    
    vec4 type1() {
      vec2 toCenter = v_center.xy - v_point.xy;
      float angle = (atan(toCenter.y, toCenter.x) / PI2) + 0.5;
      float displacement = borders(v_uv, u_displacementLength) + borders(v_uv, u_displacementLength * 2.143) * 0.3;
    
      return vec4(angle, displacement, 0.0, 1.0);
    }
    
    vec4 type2() {
      return vec4(v_color, 1.0);
    }
    
    vec4 type3() {
      vec2 st = gl_FragCoord.xy / u_resolution;
    
      vec4 strokeColor = radialRainbow(st, u_tick);
      float depth = clamp(smoothstep(-1.0, 1.0, v_depth), 0.6, 0.9);
      vec4 stroke = strokeColor * vec4(borders(v_uv, u_borderWidth)) * depth;
    
      vec4 texture;
    
      if (u_face == -1) {
        vec3 normal = normalize(v_normal);
        texture = textureCube(u_reflection, normalize(v_normal));
    
        texture.a *= u_reflectionOpacity * depth;
      }  else {
        texture = texture2D(u_texture, st);
      }
    
      if (stroke.a > 0.0) {
        return stroke - texture.a;
      } else {
        return texture;
      }
    }
    
    vec4 switchScene(int id) {
      if (id == 1) {
        return type1();
      } else if (id == 2) {
        return type2();
      } else if (id == 3) {
        return type3();
      }
    }
    
    void main() {
      if (u_scene == 3) {
        gl_FragColor = switchScene(u_typeId);
      } else {
        gl_FragColor = switchScene(u_scene);
      }
    }
  `,
  vert: `
    precision mediump float;
    #define GLSLIFY 1
    
    attribute vec3 a_position;
    attribute vec3 a_center;
    attribute vec2 a_uv;
    attribute vec3 a_color;
    
    uniform mat4 u_projection;
    uniform mat4 u_view;
    uniform mat4 u_world;
    
    varying vec3 v_normal;
    varying vec3 v_center;
    varying vec3 v_point;
    varying vec2 v_uv;
    varying vec3 v_color;
    varying float v_depth;
    
    void main() {
      vec4 center = u_projection * u_view * u_world * vec4(a_center, 1.0);
      vec4 position = u_projection * u_view * u_world * vec4(a_position, 1.0);
    
      v_normal = normalize(a_position);
      v_center = center.xyz;
      v_point = position.xyz;
      v_uv = a_uv;
      v_color = a_color;
      v_depth = (mat3(u_view) * mat3(u_world) * a_position).z;
    
      gl_Position = position;
    }
  `,
  context: {
    world: (context, { matrix }) => {
      const {
        translateX,
        translateY,
        translateZ,
        rotation,
        rotateX,
        rotateY,
        rotateZ,
        scale,
      } = CUBE_CONFIG;

      const world = mat4.create();

      mat4.translate(world, world, [translateX, translateY, translateZ]);
      mat4.rotate(world, world, rotation, [rotateX, rotateY, rotateZ]);
      mat4.scale(world, world, [scale, scale, scale]);

      if (matrix) {
        mat4.multiply(world, world, matrix);
      }

      return world;
    },
    face: (context, { cullFace }) => {
      return cullFace === CubeFaces.FRONT ? -1 : 1;
    },
    texture: (context, { texture }) => {
      return texture || emptyTexture;
    },
    reflection: (context, { reflection }) => {
      return reflection || emptyCube;
    },
    textureMatrix: (context, { textureMatrix }) => {
      return textureMatrix;
    },
    borderWidth: () => {
      const { borderWidth } = CUBE_CONFIG;

      return borderWidth;
    },
    displacementLength: () => {
      const { displacementLength } = CUBE_CONFIG;

      return displacementLength;
    },
    reflectionOpacity: () => {
      const { reflectionOpacity } = CUBE_CONFIG;

      return reflectionOpacity;
    },
    scene: () => {
      const { scene } = CUBE_CONFIG;

      return parseFloat(scene);
    },
  },
  attributes: {
    a_position: [
      [-1, +1, +1],
      [+1, +1, +1],
      [+1, -1, +1],
      [-1, -1, +1], // front face
      [+1, +1, +1],
      [+1, +1, -1],
      [+1, -1, -1],
      [+1, -1, +1], // right face
      [+1, +1, -1],
      [-1, +1, -1],
      [-1, -1, -1],
      [+1, -1, -1], // back face
      [-1, +1, -1],
      [-1, +1, +1],
      [-1, -1, +1],
      [-1, -1, -1], // left face
      [-1, +1, -1],
      [+1, +1, -1],
      [+1, +1, +1],
      [-1, +1, +1], // top face
      [-1, -1, -1],
      [+1, -1, -1],
      [+1, -1, +1],
      [-1, -1, +1], // bottom face
    ],
    a_center: [
      [0, 0, 1], // front face
      [1, 0, 0], // right face
      [0, 0, -1], // back face
      [-1, 0, 0], // left face
      [0, 1, 0], // top face
      [0, -1, 0], // bottom face
    ].map((c) => {
      return [c, c, c, c];
    }),
    a_uv: [
      [0, 0],
      [1, 0],
      [1, 1],
      [0, 1], // front face
      [0, 0],
      [1, 0],
      [1, 1],
      [0, 1], // right face
      [0, 0],
      [1, 0],
      [1, 1],
      [0, 1], // back face
      [0, 0],
      [1, 0],
      [1, 1],
      [0, 1], // left face
      [0, 0],
      [1, 0],
      [1, 1],
      [0, 1], // top face
      [0, 0],
      [1, 0],
      [1, 1],
      [0, 1], // bottom face
    ],
    a_color: [
      [0, 1, 0], // front face => mask 2
      [0, 0, 1], // right face => mask 1
      [1, 0, 0], // back face => mask 4
      [1, 1, 0], // left face => mask 6
      [1, 0, 1], // top face => mask 5
      [0, 1, 1], // bottom face => mask 3
    ].map((c) => {
      return [c, c, c, c];
    }),
  },
  uniforms: {
    u_world: regl.context("world"),
    u_face: regl.context("face"),
    u_typeId: regl.prop("typeId"),
    u_texture: regl.context("texture"),
    u_reflection: regl.context("reflection"),
    u_tick: regl.context("tick"),
    u_borderWidth: regl.context("borderWidth"),
    u_displacementLength: regl.context("displacementLength"),
    u_reflectionOpacity: regl.context("reflectionOpacity"),
    u_scene: regl.context("scene"),
  },
  cull: {
    enable: true,
    face: regl.prop("cullFace"),
  },
  depth: {
    enable: true,
    mask: false,
    func: "less",
  },
  blend: {
    enable: true,
    func: {
      srcRGB: "src alpha",
      srcAlpha: 1,
      dstRGB: "one minus src alpha",
      dstAlpha: 1,
    },
    equation: {
      rgb: "add",
      alpha: "add",
    },
    color: [0, 0, 0, 0],
  },
  elements: [
    [2, 1, 0],
    [2, 0, 3], // front face
    [6, 5, 4],
    [6, 4, 7], // right face
    [10, 9, 8],
    [10, 8, 11], // back face
    [14, 13, 12],
    [14, 12, 15], // left face
    [18, 17, 16],
    [18, 16, 19], // top face
    [20, 21, 22],
    [23, 20, 22], // bottom face
  ],
  count: 36,
  framebuffer: regl.prop("fbo"),
});

const CubeTypes = {
  DISPLACEMENT: 1,
  MASK: 2,
  FINAL: 3,
};

const CubeFaces = {
  BACK: "back",
  FRONT: "front",
};

const CubeMasks = {
  M1: 1,
  M2: 2,
  M3: 3,
  M4: 4,
  M5: 5,
  M6: 6,
};

const CAMERA_CONFIG = {
  fov: 35,
  near: 0.01,
  far: 1000,
};

const cameraConfig = {
  eye: [0, 0, 6],
  target: [0, 0, 0],
  up: [0, 1, 0],
};

const camera = regl({
  context: {
    projection: ({ viewportWidth, viewportHeight }) => {
      const { fov, near, far } = CAMERA_CONFIG;
      const fovy = (fov * Math.PI) / 180;
      const aspect = viewportWidth / viewportHeight;

      return mat4.perspective([], fovy, aspect, near, far);
    },

    view: (context, props) => {
      const config = Object.assign({}, cameraConfig, props);

      const { eye, target, up } = config;

      return mat4.lookAt([], eye, target, up);
    },

    fov: () => {
      const { fov } = CAMERA_CONFIG;

      return fov;
    },
  },

  uniforms: {
    u_projection: regl.context("projection"),
    u_view: regl.context("view"),
    u_cameraPosition: regl.context("eye"),
    u_resolution: ({ viewportWidth, viewportHeight }) => {
      return [viewportWidth, viewportHeight];
    },
  },
});

const plane = regl({
  vert: `
    precision mediump float;
    #define GLSLIFY 1
    
    uniform sampler2D u_texture;
    
    varying vec4 vUv;
    
    void main() {
      gl_FragColor = texture2DProj(u_texture, vUv);
    }
  `,
  frag: `
    precision mediump float;
    #define GLSLIFY 1

    attribute vec3 a_position;
    
    uniform mat4 u_textureMatrix;
    uniform mat4 u_world;

    varying vec4 vUv;

    void main() {
      vUv = u_textureMatrix * vec4(a_position, 1.0);

      gl_Position = u_world * vec4(a_position, 1.0);
    }
  `,
  attributes: {
    a_position: [
      [-1, 1, 0],
      [1, -1, 0],
      [-1, -1, 0],
      [-1, 1, 0],
      [1, 1, 0],
      [1, -1, 0],
    ],
  },
  context: {
    world: (context, { uvRotation }) => {
      const world = mat4.create();

      mat4.rotate(world, world, uvRotation, [0, 0, 1]);

      return world;
    },
  },
  uniforms: {
    u_world: regl.context("world"),
    u_texture: regl.prop("texture"),
    u_textureMatrix: regl.prop("textureMatrix"),
  },
  count: 6,
});

const reflector = regl({
  frag: `
    precision mediump float;
    #define GLSLIFY 1
    
    uniform vec2 u_resolution;
    uniform sampler2D u_texture;
    uniform float u_depthOpacity;
    
    varying vec2 v_uv;
    varying float v_z;
    
    mat2 scale(vec2 scale){
      return mat2(scale.x, 0.0, 0.0, scale.y);
    }
    
    void main() {
      vec2 st = gl_FragCoord.xy / u_resolution;
    
      vec4 texture = texture2D(u_texture, v_uv);

      texture.a -= u_depthOpacity * v_z;
    
      gl_FragColor = texture;
    }
  `,
  vert: `
    precision mediump float;
    #define GLSLIFY 1
    
    attribute vec3 a_position;
    attribute vec2 a_uv;
    
    uniform mat4 u_projection;
    uniform mat4 u_view;
    uniform mat4 u_world;
    uniform vec2 u_viewport;
    
    varying vec2 v_uv;
    varying float v_z;
    
    void main() {
      v_uv = a_uv;
      v_z = 1.0 - (mat3(u_view) * mat3(u_world) * a_position).z;
    
      gl_Position = u_projection * u_view * u_world * vec4(a_position, 1);
    }
  `,
  context: {
    world: (
      { viewportWidth, viewportHeight },
      { cameraConfig: mainCameraConfig, fov }
    ) => {
      const fovy = (fov * Math.PI) / 180;
      const aspect = viewportWidth / viewportHeight;
      const cameraHeight = Math.tan(fovy / 2) * mainCameraConfig.eye[2];
      const cameraWidth = cameraHeight * aspect;

      const world = mat4.create();

      mat4.scale(world, world, [cameraWidth, cameraHeight, 1.0]);

      return world;
    },
    depthOpacity: () => {
      const depthOpacity = 0.75;

      return depthOpacity;
    },
  },
  attributes: {
    a_position: [
      [-1, -1, 0],
      [1, -1, 0],
      [1, 1, 0],
      [-1, 1, 0],
    ],
    a_uv: [
      [0, 0],
      [1, 0],
      [1, 1],
      [0, 1],
    ],
  },
  uniforms: {
    u_world: regl.context("world"),
    u_texture: regl.prop("texture"),
    u_depthOpacity: regl.context("depthOpacity"),
  },
  depth: {
    enable: true,
    mask: false,
    func: "less",
  },
  blend: {
    enable: true,
    func: {
      srcRGB: "src alpha",
      srcAlpha: 1,
      dstRGB: "one minus src alpha",
      dstAlpha: 1,
    },
    equation: {
      rgb: "add",
      alpha: "add",
    },
    color: [0, 0, 0, 0],
  },
  elements: [0, 1, 2, 0, 2, 3],
  count: 6,
});

const planes = [
  {
    position: [1, 0, 0],
    normal: [1, 0, 0],
    rotation: -Math.PI * 0.5,
    axis: [0, 1, 0],
    uvRotation: Math.PI,
  },
  {
    position: [-1, 0, 0],
    normal: [-1, 0, 0],
    rotation: Math.PI * 0.5,
    axis: [0, 1, 0],
    uvRotation: Math.PI,
  },
  {
    position: [0, 1, 0],
    normal: [0, 1, 0],
    rotation: Math.PI * 0.5,
    axis: [1, 0, 0],
    uvRotation: 0,
  },
  {
    position: [0, -1, 0],
    normal: [0, -1, 0],
    rotation: -Math.PI * 0.5,
    axis: [1, 0, 0],
    uvRotation: 0,
  },
  {
    position: [0, 0, 1],
    normal: [0, 0, 1],
    rotation: Math.PI,
    axis: [0, 1, 0],
    uvRotation: Math.PI,
  },
  {
    position: [0, 0, -1],
    normal: [0, 0, -1],
    rotation: 0,
    axis: [0, 1, 0],
    uvRotation: Math.PI,
  },
];

const renderTarget = regl.framebuffer();

const reflect = (a, b) => {
  const dot2 = new Array(3);

  dot2.fill(2 * vec3.dot(b, a));

  return vec3.sub([], a, vec3.mul([], dot2, b));
};

const reflectionSetup = regl({
  context: {
    config: (
      context,
      { cameraConfig: mainCameraConfig, rotationMatrix },
      batchId
    ) => {
      const { position, normal, rotation, axis } = planes[batchId];

      const planeMatrix = mat4.translate([], rotationMatrix, position);
      const normalMatrix = mat4.translate([], rotationMatrix, normal);

      mat4.rotate(planeMatrix, planeMatrix, rotation, axis);

      const planeWorldPosition = mat4.getTranslation([], planeMatrix);
      const planeWorldNormal = mat4.getTranslation([], normalMatrix);
      const cameraWorldPosition = mainCameraConfig.eye;

      let eye = [0, 0, 0];
      vec3.sub(eye, planeWorldPosition, cameraWorldPosition);
      eye = reflect(eye, planeWorldNormal);
      vec3.negate(eye, eye);
      vec3.add(eye, eye, planeWorldPosition);

      const lookAtPosition = [0, 0, -1];
      vec3.add(lookAtPosition, lookAtPosition, cameraWorldPosition);

      let target = [0, 0, 0];
      vec3.sub(target, planeWorldPosition, lookAtPosition);
      target = reflect(target, planeWorldNormal);
      vec3.negate(target, target);
      vec3.add(target, target, planeWorldPosition);

      let up = [0, 1, 0];
      up = reflect(up, planeWorldNormal);

      const cameraConfig = {
        eye,
        target,
        up,
      };

      return {
        cameraConfig,
        planeMatrix,
      };
    },
    uvRotation: (context, props, batchId) => {
      const { uvRotation } = planes[batchId];

      return uvRotation;
    },
    faceFbo: (context, { reflectionFbo }, batchId) => {
      return reflectionFbo.faces[batchId];
    },
  },
});

const reflection = ({
  reflectionFbo,
  cameraConfig,
  rotationMatrix,
  texture,
}) => {
  const props = new Array(6);

  props.fill({
    reflectionFbo,
    cameraConfig,
    rotationMatrix,
  });

  reflectionSetup(
    props,
    ({ viewportWidth, viewportHeight, config, uvRotation, faceFbo }) => {
      const textureMatrix = mat4.fromValues(
        0.5,
        0,
        0,
        0,
        0,
        0.5,
        0,
        0,
        0,
        0,
        0.5,
        0,
        0.5,
        0.5,
        0.5,
        1
      );

      renderTarget.resize(viewportWidth, viewportHeight);

      renderTarget.use(() => {
        regl.clear({
          color: [0, 0, 0, 0],
          depth: 1,
        });

        camera(config.cameraConfig, ({ projection, view, fov }) => {
          mat4.multiply(textureMatrix, textureMatrix, projection);
          mat4.mul(textureMatrix, textureMatrix, view);
          mat4.mul(textureMatrix, textureMatrix, config.planeMatrix);

          reflector({
            texture,
            cameraConfig,
            fov,
          });
        });
      });

      faceFbo.use(() => {
        regl.clear({
          color: [0, 0, 0, 0],
          depth: 1,
        });

        plane({
          texture: renderTarget,
          textureMatrix,
          uvRotation,
        });
      });
    }
  );
};

const CONFIG = {
  cameraX: 0,
  cameraY: 0,
  cameraZ: 5.7,
  rotation: 4.8,
  rotateX: 1,
  rotateY: 1,
  rotateZ: 1,
  velocity: 0.005,
};

/**
 * Fbos
 */
const displacementFbo = regl.framebuffer();
const maskFbo = regl.framebuffer();
const contentFbo = regl.framebuffer();
const reflectionFbo = regl.framebufferCube(1024);

/**
 * Textures
 */
const availableTextures = {
  ["slide1"]: Texture(
    regl,
    ""
  ),
  ["slide2"]: Texture(
    regl,
    ""
  ),
  ["slide3"]: Texture(
    regl,
    ""
  ),
  ["slide4"]: Texture(
    regl,
    ""
  ),
};
const textures = [
  {
    texture: availableTextures.slide1,
    typeId: ContentTypes.BLUE,
    maskId: CubeMasks.M1,
  },
  {
    texture: availableTextures.slide1,
    typeId: ContentTypes.BLUE,
    maskId: CubeMasks.M2,
  },
  {
    texture: availableTextures.slide1,
    typeId: ContentTypes.BLUE,
    maskId: CubeMasks.M3,
  },
  {
    texture: availableTextures.slide1,
    typeId: ContentTypes.BLUE,
    maskId: CubeMasks.M4,
  },
  {
    texture: availableTextures.slide1,
    typeId: ContentTypes.BLUE,
    maskId: CubeMasks.M5,
  },
  {
    texture: availableTextures.slide1,
    typeId: ContentTypes.BLUE,
    maskId: CubeMasks.M6,
  },
];

let nextTextureName;
setInterval(() => {
  if (nextTextureName) {
    const masks = visibleMasks(factor);
    for (const texture of textures) {
      if (!masks.includes(texture.maskId)) {
        texture.texture = availableTextures[nextTextureName];
      }
    }
  }
}, 100);

const setNextTexture = (name) => {
  nextTextureName = name;
};

const visibleMasks = (factor) => {
  if (factor < 0.9) return [CubeMasks.M1, CubeMasks.M2, CubeMasks.M3];
  if (factor < 1.05) return [CubeMasks.M1, CubeMasks.M2];
  if (factor < 1.3) return [CubeMasks.M2, CubeMasks.M3];
  if (factor < 2) return [CubeMasks.M2, CubeMasks.M3, CubeMasks.M6];
  if (factor < 2.2) return [CubeMasks.M3, CubeMasks.M6];
  if (factor < 2.45) return [CubeMasks.M3, CubeMasks.M4, CubeMasks.M6];
  if (factor < 2.9) return [CubeMasks.M3, CubeMasks.M4];
  if (factor < 3.05) return [CubeMasks.M4, CubeMasks.M1];
  if (factor < 3.2) return [CubeMasks.M4, CubeMasks.M5, CubeMasks.M1];
  if (factor < 3.6) return [CubeMasks.M4, CubeMasks.M5];
  if (factor < 3.8) return [CubeMasks.M4, CubeMasks.M5, CubeMasks.M6];
  if (factor < 3.95) return [CubeMasks.M5, CubeMasks.M6];
  if (factor < 4.6) return [CubeMasks.M5, CubeMasks.M6, CubeMasks.M2];
  if (factor < 4.75) return [CubeMasks.M2, CubeMasks.M6];
  if (factor < 5) return [CubeMasks.M2];
  return [1, 2, 3];
};

let factor = 0;
let radX = 0;
let radY = 0;

let fps = Date.now();
let skipFrames = false;
let offset = 0;

function enableFrameSkip() {
  skipFrames = true;
}

function disableFrameSkip() {
  skipFrames = false;
}

const animate = ({ viewportWidth, viewportHeight, tick }) => {
  const {
    rotation,
    rotateX,
    rotateY,
    rotateZ,
    velocity,
    cameraX,
    cameraY,
    cameraZ,
  } = CONFIG;
  /**
   * Resize Fbos
   */
  displacementFbo.resize(viewportWidth, viewportHeight);
  maskFbo.resize(viewportWidth, viewportHeight);
  contentFbo.resize(viewportWidth, viewportHeight);

  /**
   * Rotation Matrix
   */
  if (skipFrames && tick % 2 == 0) {
    factor = ((tick + offset + 0.5) * velocity) % (Math.PI * 2);
    offset -= 1;
  } else {
    factor = ((tick + offset) * velocity) % (Math.PI * 2);
  }
  const rotationMatrix = mat4.create();

  mat4.rotate(rotationMatrix, rotationMatrix, rotation, [
    rotateX,
    rotateY,
    rotateZ,
  ]);
  mat4.rotate(rotationMatrix, rotationMatrix, factor, [
    Math.cos(factor),
    Math.sin(factor),
    0.5,
  ]);

  /**
   * Camera config
   */
  const cameraConfig = {
    eye: [cameraX, cameraY, cameraZ],
    target: [0, 0, 0],
  };

  /**
   * Clear context
   */
  regl.clear({
    color: [0, 0, 0, 0],
    depth: 1,
  });

  camera(cameraConfig, () => {
    /**
     * Render the displacement into the displacementFbo
     * Render the mask into the displacementFbo
     */
    cube([
      {
        fbo: displacementFbo,
        cullFace: CubeFaces.BACK,
        typeId: CubeTypes.DISPLACEMENT,
        matrix: rotationMatrix,
      },
      {
        fbo: maskFbo,
        cullFace: CubeFaces.BACK,
        typeId: CubeTypes.MASK,
        matrix: rotationMatrix,
      },
    ]);

    /**
     * Render the content to print in the cube
     */
    contentFbo.use(() => {
      content({
        textures,
        displacement: displacementFbo,
        mask: maskFbo,
      });
    });
  });

  /**
   * Render the content reflection
   */
  reflection({
    reflectionFbo,
    cameraConfig,
    rotationMatrix,
    texture: contentFbo,
  });

  camera(cameraConfig, () => {
    /**
     * Render the back face of the cube
     * Render the front face of the cube
     */
    cube([
      {
        cullFace: CubeFaces.FRONT,
        typeId: CubeTypes.FINAL,
        reflection: reflectionFbo,
        matrix: rotationMatrix,
      },
      {
        cullFace: CubeFaces.BACK,
        typeId: CubeTypes.FINAL,
        texture: contentFbo,
        matrix: rotationMatrix,
      },
    ]);
  });
  fps = Date.now();
};

const init = () => {
  play(animate);
};
init();

let imageCycle = ["slide1", "slide2", "slide3", "slide4", "slide1"];
let cycleHandler;
const startCycle = () => {
  let cycleIndex = 0;
  cycleHandler = setInterval(() => {
    setNextTexture(
      imageCycle[(cycleIndex = (cycleIndex + 1) % imageCycle.length)]
    );
  }, 3000);
};
const stopCycle = () => clearInterval(cycleHandler);

startCycle();
}


              
            
!
999px

Console