Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URL's added here will be added as <link>s in order, and before the CSS in the editor. If you link to another Pen, it will include the CSS from that Pen. If the preprocessor matches, it will attempt to combine them before processing.

+ add another resource

JavaScript

Babel is required to process package imports. If you need a different preprocessor remove all packages first.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Behavior

Save Automatically?

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                <div id="content-canvas"></div>

              
            
!

CSS

              
                body{
  margin: 0;
  display: flex;
}

#content-canvas{
  width: 100%;
  height: 100vh;
}

canvas{
  width: 100%;
  height: 100%;
  display: block;
}
              
            
!

JS

              
                const s = {
  vs: `
      #define NUM_OCTAVES 8

      uniform vec3 mouse;
      uniform float time;

      varying vec2 vUv;
      varying vec3 vPosition;

      //	Simplex 4D Noise 
      //	by Ian McEwan, Ashima Arts
      //
      vec4 permute(vec4 x){return mod(((x*34.0)+1.0)*x, 289.0);}
      float permute(float x){return floor(mod(((x*34.0)+1.0)*x, 289.0));}
      vec4 taylorInvSqrt(vec4 r){return 1.79284291400159 - 0.85373472095314 * r;}
      float taylorInvSqrt(float r){return 1.79284291400159 - 0.85373472095314 * r;}

      vec4 grad4(float j, vec4 ip){
        const vec4 ones = vec4(1.0, 1.0, 1.0, -1.0);
        vec4 p,s;

        p.xyz = floor( fract (vec3(j) * ip.xyz) * 7.0) * ip.z - 1.0;
        p.w = 1.5 - dot(abs(p.xyz), ones.xyz);
        s = vec4(lessThan(p, vec4(0.0)));
        p.xyz = p.xyz + (s.xyz*2.0 - 1.0) * s.www; 

        return p;
      }

      float snoise(vec4 v){
        const vec2  C = vec2( 0.138196601125010504,  // (5 - sqrt(5))/20  G4
                              0.309016994374947451); // (sqrt(5) - 1)/4   F4
      // First corner
        vec4 i  = floor(v + dot(v, C.yyyy) );
        vec4 x0 = v -   i + dot(i, C.xxxx);

      // Other corners

      // Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI)
        vec4 i0;

        vec3 isX = step( x0.yzw, x0.xxx );
        vec3 isYZ = step( x0.zww, x0.yyz );
      //  i0.x = dot( isX, vec3( 1.0 ) );
        i0.x = isX.x + isX.y + isX.z;
        i0.yzw = 1.0 - isX;

      //  i0.y += dot( isYZ.xy, vec2( 1.0 ) );
        i0.y += isYZ.x + isYZ.y;
        i0.zw += 1.0 - isYZ.xy;

        i0.z += isYZ.z;
        i0.w += 1.0 - isYZ.z;

        // i0 now contains the unique values 0,1,2,3 in each channel
        vec4 i3 = clamp( i0, 0.0, 1.0 );
        vec4 i2 = clamp( i0-1.0, 0.0, 1.0 );
        vec4 i1 = clamp( i0-2.0, 0.0, 1.0 );

        //  x0 = x0 - 0.0 + 0.0 * C 
        vec4 x1 = x0 - i1 + 1.0 * C.xxxx;
        vec4 x2 = x0 - i2 + 2.0 * C.xxxx;
        vec4 x3 = x0 - i3 + 3.0 * C.xxxx;
        vec4 x4 = x0 - 1.0 + 4.0 * C.xxxx;

      // Permutations
        i = mod(i, 289.0); 
        float j0 = permute( permute( permute( permute(i.w) + i.z) + i.y) + i.x);
        vec4 j1 = permute( permute( permute( permute (
                   i.w + vec4(i1.w, i2.w, i3.w, 1.0 ))
                 + i.z + vec4(i1.z, i2.z, i3.z, 1.0 ))
                 + i.y + vec4(i1.y, i2.y, i3.y, 1.0 ))
                 + i.x + vec4(i1.x, i2.x, i3.x, 1.0 ));
      // Gradients
      // ( 7*7*6 points uniformly over a cube, mapped onto a 4-octahedron.)
      // 7*7*6 = 294, which is close to the ring size 17*17 = 289.

        vec4 ip = vec4(1.0/294.0, 1.0/49.0, 1.0/7.0, 0.0) ;

        vec4 p0 = grad4(j0,   ip);
        vec4 p1 = grad4(j1.x, ip);
        vec4 p2 = grad4(j1.y, ip);
        vec4 p3 = grad4(j1.z, ip);
        vec4 p4 = grad4(j1.w, ip);

      // Normalise gradients
        vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
        p0 *= norm.x;
        p1 *= norm.y;
        p2 *= norm.z;
        p3 *= norm.w;
        p4 *= taylorInvSqrt(dot(p4,p4));

      // Mix contributions from the five corners
        vec3 m0 = max(0.6 - vec3(dot(x0,x0), dot(x1,x1), dot(x2,x2)), 0.0);
        vec2 m1 = max(0.6 - vec2(dot(x3,x3), dot(x4,x4)            ), 0.0);
        m0 = m0 * m0;
        m1 = m1 * m1;
        return 49.0 * ( dot(m0*m0, vec3( dot( p0, x0 ), dot( p1, x1 ), dot( p2, x2 )))
                     + dot(m1*m1, vec2( dot( p3, x3 ), dot( p4, x4 ) ) ) ) ;

      }

      void main(){
        vec3 newpos = position;
        vec3 dir = newpos - mouse;
        float dist = length(dir);
        float radius = 5.;

        vec3 noisepos;

        noisepos.x = 5.0 * snoise(vec4(position * 5.0, time * 0.5));
        noisepos.y = snoise(vec4(position, time));    
        noisepos.z = 5.0 * snoise(vec4(position * 5.0, time * 0.5));

        float ratio = 1. - clamp(dist / radius, 0.0, 1.0);
        vec3 pos = dir * ratio * noisepos * 1.5;
          
        newpos.y += pos.y * 0.2;
        newpos.xz += pos.xz;

        vec4 mvPosition = modelViewMatrix * vec4(newpos, 1.0);
        gl_PointSize = 100. * (1. / - mvPosition.z);
        gl_Position = projectionMatrix * mvPosition;

        vPosition = position;
        vUv = uv;
      }
`,
  fs: `
      varying vec2 vUv;
      varying vec3 vPosition;

      void main(){ 
        vec2 uv = vUv;
        
        if (length(gl_PointCoord.xy - vec2(0.5)) > 0.5) discard;

        vec3 normal = normalize(vPosition);
        vec3 light = normalize(vec3(0.0, 0.5, -1.0));

        float diff = max(dot(normal, light), 0.0) * 1.5;

        vec3 color = vec3(0, 255, 255) / 255.;

        gl_FragColor = vec4(color * diff, 1.0);
      }
`
};

// Carga modelos 3D externos o texturas dependiendo de la opcion
const loaderFiles = {
  gltf: new THREE.GLTFLoader(),
  texture: new THREE.TextureLoader()
};

class WebGL {
  constructor() {
    this.renderer = new THREE.WebGLRenderer({ antialias: true });
    this.camera = new THREE.PerspectiveCamera(
      45,
      innerWidth / innerHeight,
      0.1,
      1000
    );
    this.scene = new THREE.Scene();
    this.group = new THREE.Group();
    this.clock = new THREE.Clock();
    this.raycaster = new THREE.Raycaster();
    this.mouse = new THREE.Vector3();
    this.loader = loaderFiles.gltf;
    this.loaderText = loaderFiles.texture;
  }

  // Coloca el objeto renderer dentro del DOM
  // Instaciamos la clase OrbitControls para mover la camara
  // Agrega la camara y el objeto group dentro de la escena
  init() {
    this.scene.add(this.camera);
    this.scene.add(this.group);

    this.scene.background = new THREE.Color(0x000000);

    this.controls = new THREE.OrbitControls(
      this.camera,
      this.renderer.domElement
    );

    this.camera.position.set(0, 10, 50);
    this.camera.lookAt(this.scene.position);

    const _contentCanvas = document.querySelector("#content-canvas");
    _contentCanvas.appendChild(this.renderer.domElement);

    this.loadModel();

    window.addEventListener("resize", this.onResize);
    window.addEventListener("mousemove", (ev) => this.onMousemove(ev));
  }

  // Inicia todos los metodos que serviran para crear nuestro espacio y objetos
  loadModel() {
    this.loader.load(
      "https://rawcdn.githack.com/AlainBarrios/3d-models/694ea0751aab59c235390f61e81ee1d37f328d5a/knight_girl.glb?raw=true",
      (gltf) => {
        this.uniforms = {
          time: {
            type: "f",
            value: 0
          },
          resolution: {
            type: "v2",
            value: new THREE.Vector2(innerWidth, innerHeight)
          },
          mouse: {
            type: "v3",
            value: new THREE.Vector3(0, 0, 0)
          }
        };
        
        console.log(gltf)

        const mat = new THREE.ShaderMaterial({
          extensions: {
            derivatives: "#extension GL_OES_standard_derivatives : enable"
          },
          uniforms: this.uniforms,
          vertexShader: s.vs,
          fragmentShader: s.fs
        });

        const material = new THREE.PointsMaterial({
          color: 0x00fff6,
          size: 2,
          map: this.loaderText.load("https://i.ibb.co/RTKfjJN/point.png"),
          transparent: true,
          sizeAttenuation: false,
          alphaTest: 0.5
        });

        this.positions = this.combineBuffer(gltf, "position");

        const geo = new THREE.BufferGeometry();
        geo.setAttribute("position", this.positions);

        geo.computeBoundingBox();
        geo.attributes.position.setDynamic(true);
        geo.rotateX(-Math.PI * 0.5);

        this._modelMesh = new THREE.Points(geo, mat);
        this._modelMesh.position.set(0, -10, 0);
        this.scene.add(this._modelMesh);

        this.plane = new THREE.Plane(new THREE.Vector3(0, 0, 1), 0);

        this.endAnimation();
        this.animate();
        this.addLight();
      },

      (xhr) => {
        console.log((xhr.loaded / xhr.total) * 100 + "% loaded");
      },

      (error) => {
        console.log("An error happened");
      }
    );
  }

  endAnimation() {
    this.controls.addEventListener("end", () => {
      this.plane.normal.copy(this.camera.position);
      this.plane.normal.y = 0;
      this.plane.normal.normalize();
    });
  }

  combineBuffer(model, bufferName) {
    let count = 0;

    model.scene.traverse((child) => {
      if (child.isMesh) {
        const buffer = child.geometry.attributes[bufferName];

        count += buffer.array.length;
      }
    });

    const combined = new Float32Array(count);

    let offset = 0;

    model.scene.traverse((child) => {
      if (child.isMesh) {
        const buffer = child.geometry.attributes[bufferName];
        combined.set(buffer.array, offset);
        offset += buffer.array.length;
      }
    });

    return new THREE.BufferAttribute(combined, 3);
  }

  addLight() {
    const ambientLight = new THREE.HemisphereLight(
      0xddeeff, // sky color
      0x202020, // ground color
      5 // intensity
    );

    this.scene.add(ambientLight);

    const mainLight = new THREE.DirectionalLight(0xffffff, 3);
    mainLight.position.set(10, 10, 10);

    this.scene.add(mainLight);
  }

  onMousemove(ev) {
    this.mouse.x = (ev.clientX / innerWidth) * 2 - 1;
    this.mouse.y = -(ev.clientY / innerHeight) * 2 + 1;

    this.raycaster.setFromCamera(this.mouse, this.camera);

    this.raycaster.ray.intersectPlane(this.plane, this.uniforms.mouse.value);
    this._modelMesh.worldToLocal(this.uniforms.mouse.value);

    const intersect = this.raycaster.intersectObjects(this.scene.children);

    /*for (let i = 0; i < this.positions.array.length; i++) {
      const array = this.positions.array;
      const vec3 = new THREE.Vector3();
      vec3.set(array[i * 3], array[i * 3 + 1], array[i * 3 + 2]);

      const dist = vec3.distanceTo(this.uniforms.mouse.value);

      if (dist < 1) {
        //console.log("a");
      }
    }*/
  }

  // Actualiza cualquier cambio, para luego representarlo en el canvas
  animate() {
    const that = this;
    this.renderer.setAnimationLoop(() => {
      const time = this.clock.getElapsedTime() * 0.5;

      this._modelMesh.rotation.y = time * 0.5;
      this.uniforms.time.value = time;

      if (that.resizeRendererToDisplaySize(that.renderer)) {
        const canvas = that.renderer.domElement;
        that.camera.aspect = canvas.clientWidth / canvas.clientHeight;
        that.camera.updateProjectionMatrix();
      }

      this.render();
    });
  }

  // Rescala el canvas y escenario
  resizeRendererToDisplaySize(renderer) {
    const canvas = renderer.domElement;
    const width = canvas.clientWidth;
    const height = canvas.clientHeight;
    const needResize = canvas.width !== width || canvas.height !== height;
    if (needResize) {
      renderer.setSize(width, height, false);
    }
    return needResize;
  }

  // Renderiza nuestro escenario
  render() {
    this.renderer.render(this.scene, this.camera);
  }
}

const webgl = new WebGL();
webgl.init();

              
            
!
999px

Console