Pen Settings

HTML

CSS

CSS Base

Vendor Prefixing

Add External Stylesheets/Pens

Any URL's added here will be added as <link>s in order, and before the CSS in the editor. You can use the CSS from another Pen by using it's URL and the proper URL extention.

+ add another resource

JavaScript

Babel includes JSX processing.

Add External Scripts/Pens

Any URL's added here will be added as <script>s in order, and run before the JavaScript in the editor. You can use the URL of any other Pen and it will include the JavaScript from that Pen.

+ add another resource

Packages

Add Packages

Search for and use JavaScript packages from npm here. By selecting a package, an import statement will be added to the top of the JavaScript editor for this package.

Behavior

Save Automatically?

If active, Pens will autosave every 30 seconds after being saved once.

Auto-Updating Preview

If enabled, the preview panel updates automatically as you code. If disabled, use the "Run" button to update.

Format on Save

If enabled, your code will be formatted when you actively save your Pen. Note: your code becomes un-folded during formatting.

Editor Settings

Code Indentation

Want to change your Syntax Highlighting theme, Fonts and more?

Visit your global Editor Settings.

HTML

              
                <div id="content-canvas"></div>
<h1 class="title">Deformation</h1>

              
            
!

CSS

              
                @font-face{
  font-family: "Futura";
  src: url(https://rawcdn.githack.com/AlainBarrios/Fonts/5981a22fa6ee4a91c0ec1db0893885cfff30f5dd/futura medium bt.ttf?raw=true)
}

*,
*::before,
*::after {
  box-sizing: border-box;
  text-rendering: optimizeLegibility;
  -webkit-font-smoothing: antialiased;
  -moz-osx-font-smoothing: grayscale;
  font-kerning: auto;
  -webkit-text-size-adjust: 100%;
}

body{
  margin: 0;
}

canvas{
  max-width: 100%;
  display: block;
}

.title{
  position: absolute;
  z-index: 10;
  font-size: 4vw;
  top: 50%;
  left: 50%;
  transform: translate(-50%, calc(-50% - 2vw) );
  text-transform: uppercase;
  color: #fff;
  letter-spacing: 1.5rem;
  padding-left: 1.5rem;
  font-family: "Futura";
  font-weight: bold;
  mix-blend-mode: difference;
}

              
            
!

JS

              
                console.clear();
import { RGBShiftShader } from "https://rawcdn.githack.com/mrdoob/three.js/b5c272cf408cb33153190fa715d81581bd95ee47/examples/jsm/shaders/RGBShiftShader.js";
import { FilmPass } from "https://rawcdn.githack.com/mrdoob/three.js/b5c272cf408cb33153190fa715d81581bd95ee47/examples/jsm/postprocessing/FilmPass.js";
import { FXAAShader } from "https://rawcdn.githack.com/mrdoob/three.js/b5c272cf408cb33153190fa715d81581bd95ee47/examples/jsm/shaders/FXAAShader.js";

const noise = `
  //	Simplex 4D Noise 
  //	by Ian McEwan, Ashima Arts
  //
  vec4 permute(vec4 x){return mod(((x*34.0)+1.0)*x, 289.0);}
  float permute(float x){return floor(mod(((x*34.0)+1.0)*x, 289.0));}
  vec4 taylorInvSqrt(vec4 r){return 1.79284291400159 - 0.85373472095314 * r;}
  float taylorInvSqrt(float r){return 1.79284291400159 - 0.85373472095314 * r;}

  vec4 grad4(float j, vec4 ip){
    const vec4 ones = vec4(1.0, 1.0, 1.0, -1.0);
    vec4 p,s;

    p.xyz = floor( fract (vec3(j) * ip.xyz) * 7.0) * ip.z - 1.0;
    p.w = 1.5 - dot(abs(p.xyz), ones.xyz);
    s = vec4(lessThan(p, vec4(0.0)));
    p.xyz = p.xyz + (s.xyz*2.0 - 1.0) * s.www; 

    return p;
  }

  float snoise(vec4 v){
    const vec2  C = vec2( 0.138196601125010504,  // (5 - sqrt(5))/20  G4
                          0.309016994374947451); // (sqrt(5) - 1)/4   F4
    // First corner
    vec4 i  = floor(v + dot(v, C.yyyy) );
    vec4 x0 = v -   i + dot(i, C.xxxx);

    // Other corners

    // Rank sorting originally contributed by Bill Licea-Kane, AMD (formerly ATI)
    vec4 i0;

    vec3 isX = step( x0.yzw, x0.xxx );
    vec3 isYZ = step( x0.zww, x0.yyz );
    //  i0.x = dot( isX, vec3( 1.0 ) );
    i0.x = isX.x + isX.y + isX.z;
    i0.yzw = 1.0 - isX;

    //  i0.y += dot( isYZ.xy, vec2( 1.0 ) );
    i0.y += isYZ.x + isYZ.y;
    i0.zw += 1.0 - isYZ.xy;

    i0.z += isYZ.z;
    i0.w += 1.0 - isYZ.z;

    // i0 now contains the unique values 0,1,2,3 in each channel
    vec4 i3 = clamp( i0, 0.0, 1.0 );
    vec4 i2 = clamp( i0-1.0, 0.0, 1.0 );
    vec4 i1 = clamp( i0-2.0, 0.0, 1.0 );

    //  x0 = x0 - 0.0 + 0.0 * C 
    vec4 x1 = x0 - i1 + 1.0 * C.xxxx;
    vec4 x2 = x0 - i2 + 2.0 * C.xxxx;
    vec4 x3 = x0 - i3 + 3.0 * C.xxxx;
    vec4 x4 = x0 - 1.0 + 4.0 * C.xxxx;

    // Permutations
    i = mod(i, 289.0); 
    float j0 = permute( permute( permute( permute(i.w) + i.z) + i.y) + i.x);
    vec4 j1 = permute( permute( permute( permute (
             i.w + vec4(i1.w, i2.w, i3.w, 1.0 ))
            + i.z + vec4(i1.z, i2.z, i3.z, 1.0 ))
            + i.y + vec4(i1.y, i2.y, i3.y, 1.0 ))
            + i.x + vec4(i1.x, i2.x, i3.x, 1.0 ));
    // Gradients
    // ( 7*7*6 points uniformly over a cube, mapped onto a 4-octahedron.)
    // 7*7*6 = 294, which is close to the ring size 17*17 = 289.

    vec4 ip = vec4(1.0/294.0, 1.0/49.0, 1.0/7.0, 0.0) ;

    vec4 p0 = grad4(j0,   ip);
    vec4 p1 = grad4(j1.x, ip);
    vec4 p2 = grad4(j1.y, ip);
    vec4 p3 = grad4(j1.z, ip);
    vec4 p4 = grad4(j1.w, ip);

    // Normalise gradients
    vec4 norm = taylorInvSqrt(vec4(dot(p0,p0), dot(p1,p1), dot(p2, p2), dot(p3,p3)));
    p0 *= norm.x;
    p1 *= norm.y;
    p2 *= norm.z;
    p3 *= norm.w;
    p4 *= taylorInvSqrt(dot(p4,p4));

    // Mix contributions from the five corners
    vec3 m0 = max(0.6 - vec3(dot(x0,x0), dot(x1,x1), dot(x2,x2)), 0.0);
    vec2 m1 = max(0.6 - vec2(dot(x3,x3), dot(x4,x4)            ), 0.0);
    m0 = m0 * m0;
    m1 = m1 * m1;
    return 49.0 * ( dot(m0*m0, vec3( dot( p0, x0 ), dot( p1, x1 ), dot( p2, x2 )))
              + dot(m1*m1, vec2( dot( p3, x3 ), dot( p4, x4 ) ) ) ) ;

  }
`;

class WebGL {
  constructor() {
    this.renderer = new THREE.WebGLRenderer({ antialias: true });
    this.camera = new THREE.PerspectiveCamera(
      45,
      innerWidth / innerHeight,
      0.1,
      1000
    );
    this.scene = new THREE.Scene();
    this.clock = new THREE.Clock();

    this.renderer.outputEncoding = THREE.sRGBEncoding;

    this.update = this.update.bind(this);
    this.onResize = this.onResize.bind(this);
  }

  // Coloca el objeto renderer dentro del DOM
  // Instaciamos la clase OrbitControls para mover la camara
  // Agrega la camara y el objeto group dentro de la escena
  init() {
    const _contentCanvas = document.querySelector("#content-canvas");

    this.renderer.setSize(innerWidth, innerHeight);
    this.renderer.setPixelRatio(devicePixelRatio);
    this.renderer.physicallyCorrectLights = true;

    this.scene.add(this.camera);

    this.controls = new THREE.OrbitControls(this.camera);

    this.camera.position.set(0, 0, 10);
    this.camera.lookAt(this.scene.position);

    _contentCanvas.appendChild(this.renderer.domElement);

    this.initFn();
  }

  // Inicia todos los metodos que serviran para crear nuestro espacio y objetos
  initFn() {
    this.addMesh();
    this.addLight();
    this.addPostProcessing();
    this.update();
    this.onResize();

    window.addEventListener("resize", this.onResize);
  }

  // Crea el objeto (geometria, material y malla) para luego agregarlo al escenario
  addMesh() {
    const size = 2;

    const _sphereGeo = new THREE.SphereBufferGeometry(size, 200, 200);

    this._sphereMat = new THREE.MeshStandardMaterial({
      metalness: 0,
      roughness: 0
    });

    this.uniforms = {
      uTime: { type: "f", value: 0 }
    };

    this._sphereMat.onBeforeCompile = (shader) => {
      shader.uniforms.uTime = this.uniforms.uTime;

      /***********************************************************/
                        /*****VERTEX SHADER*****/
      /***********************************************************/

      shader.vertexShader = `
      uniform float uTime; 

      varying vec2 vUv;
      varying vec3 vertexNormal;
        
      ${noise}
        
      vec3 noise(vec3 pos) {
        float n = 0.1 + (0.5 * snoise(vec4(pos,uTime)));
        // float n = n1;
        return normalize(pos) * n;
      }

      // http://lolengine.net/blog/2013/09/21/picking-orthogonal-vector-combing-coconuts
      vec3 orthogonal(vec3 v) {
          return normalize(abs(v.x) > abs(v.z) ? vec3(-v.y, v.x, 0.0)
          : vec3(0.0, -v.z, v.y));
      }

      // Any function can go here to distort p
      vec3 distorted(vec3 p) {
          return p + noise(p);
      }

      ${shader.vertexShader} `;

      shader.vertexShader = shader.vertexShader.replace(
        "#include <beginnormal_vertex>",
        `
        #include <beginnormal_vertex>
        
        float tangentFactor = 0.01;
        
        vec3 distortedPosition = distorted(position);
        vec3 tangent1 = orthogonal(normal);
        vec3 tangent2 = normalize(cross(normal, tangent1));
        vec3 nearby1 = position + tangent1 * tangentFactor;
        vec3 nearby2 = position + tangent2 * tangentFactor;
        vec3 distorted1 = distorted(nearby1);
        vec3 distorted2 = distorted(nearby2);
          
        objectNormal = normalize(cross(distorted1 - distortedPosition, distorted2 - distortedPosition));

        vec3 newPosition = distortedPosition;
        `
      );

      shader.vertexShader = shader.vertexShader.replace(
        "#include <begin_vertex>",
        "vec3 transformed = newPosition;"
      );
    };

    this.sphereMesh = new THREE.Mesh(_sphereGeo, this._sphereMat);

    this.sphereMesh.rotation.x = Math.PI / 2;
    this.sphereMesh.rotation.y = Math.PI / 2;

    this.scene.add(this.sphereMesh);
  }

  // Actualiza cualquier cambio, para luego representarlo en el canvas
  update() {
    this.render();
    const time = this.clock.getElapsedTime() * 0.5;

    this.uniforms.uTime.value = time;

    requestAnimationFrame(this.update);
  }

  addLight() {
    const ambientLight = new THREE.HemisphereLight(
      0xddeeff, // sky color
      0x202020, // ground color
      2 // intensity
    );

    this.scene.add(ambientLight);

    this.lightTop = new THREE.DirectionalLight(0xe6c9f7, 1);
    this.lightTop.position.set(0, 200, 200);
    this.scene.add(this.lightTop);

    this.lightBottom = new THREE.DirectionalLight(0x36e8e8, 0.2);
    this.lightBottom.position.set(0, -200, 200);
    this.scene.add(this.lightBottom);
  }

  addPostProcessing() {
    this.effectComposer = new THREE.EffectComposer(this.renderer);
    this.effectComposer.renderToScreen = true;
    this.effectComposer.setSize(
      window.innerWidth * window.devicePixelRatio,
      window.innerHeight * window.devicePixelRatio
    );

    this.renderPass = new THREE.RenderPass(this.scene, this.camera);
    this.effectComposer.addPass(this.renderPass);

    this.RGBShiftPass = new THREE.ShaderPass(RGBShiftShader);
    this.RGBShiftPass.material.uniforms.amount.value = 0.002
    this.effectComposer.addPass(this.RGBShiftPass);

    this.FXAAPass = new THREE.ShaderPass(FXAAShader);
    this.FXAAPass.material.uniforms.resolution.value.x = 1 / window.innerWidth;
    this.FXAAPass.material.uniforms.resolution.value.y = 1 / window.innerHeight;
    this.effectComposer.addPass(this.FXAAPass);

    const filmPass = new FilmPass(
      0.35, // noise intensity
      0.025, // scanline intensity
      648, // scanline count
      false // grayscale
    );
    this.effectComposer.addPass(filmPass);
  }

  // Rescala el canvas y escenario
  onResize() {
    const _w = window.innerWidth * window.devicePixelRatio;
    const _h = window.innerHeight * window.devicePixelRatio;

    this.renderer.setSize(_w, _h);
    this.effectComposer.setSize(_w, _h);
    this.camera.aspect = _w / _h;

    this.FXAAPass.material.uniforms.resolution.value.x = 1 / window.innerWidth;
    this.FXAAPass.material.uniforms.resolution.value.y = 1 / window.innerHeight;

    this.camera.updateProjectionMatrix();
  }

  // Renderiza nuestro escenario
  render() {
    //this.renderer.render(this.scene, this.camera);
    this.effectComposer.render(this.clock.getDelta());
  }
}

const webgl = new WebGL();
webgl.init();

              
            
!
999px

Console